Houghton Mifflin Harcourt
Into Math⑳20
correlated to the
Indiana Academic Standards: Mathematics (2020)

- Grade K
- Grade 1
- Grade 2
- Grade 3
- Grade 4
- Grade 5
- Grade 6
- Grade 7
- Grade 8
- Advanced 1 - Grades 6/7
- Accelerated 7
- Advanced 2 - Grades 7/8

Houghton Mifflin Harcourt

Into Math, Grade K ©2020
correlated to the

Indiana Academic Standards: Mathematics (2020) Grade K

Standard	Descriptor	Citations
PROCESS STANDARDS FOR MATHEMATICS		
PS. 1	Make sense of problems and persevere in solving them.	This standard is covered throughout the program. Representative pages include: SE: 21-24, 37-40, 57-60, 109-114, 157-162, 195-198, 207- 210, 227-230, 243-246, 267-270, 275-280, 313-316, 347- 350, 365-368, 381-384, 397-400, 413-416, 443-446, 459- 462, 485-488, 497-500, 505-508 TE: 21-24, 37-40, 57-60, 109-114, 157-162, 195-198, 207- 210, 227-230, 243-246, 267-270, 275-280, 313-316, 347- 350, 365-368, 381-384, 397-400, 413-416, 443-446, 459- 462, 485-488, 497-500, 505-508 INsuccess: 1, 139
PS. 2	Reason abstractly and quantitatively.	This standard is covered throughout the program. Representative pages include: SE: 37-40, 61-64, 143-146, 203-206, 239-242, 247-250, 267- 270, 287-292, 313-316, 347-350, 365-368, 389-392, 393- 396, 443-446, 463-466, 481-484, 485-488, 497-500 TE: $\quad 37-40,61-64,143-146,203-206,239-242,247-250,267-$ 270, 287-292, 313-316, 347-350, 365-368, 389-392, 393- 396, 443-446, 463-466, 481-484, 485-488, 497-500 INsuccess: 7, 13, 19, 61

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade K

Standard	Descriptor	Citations
PS. 3	Construct viable arguments and critique the reasoning of others.	This standard is covered throughout the program. Representative pages include: SE: 45-48, 53-56, 93-96, 147-150, 207-210, 231-234, 275- $280,287-292,313-316,373-376,405-408,425-428,429-$ $432,485-488,489-492,497-500,501-504,505-508$ TE: 45-48, 53-56, 93-96, 147-150, 207-210, 231-234, 275- 280, 287-292, 313-316, 373-376, 405-408, 425-428, 429- $432,485-488,489-492,497-500,501-504,505-508$ INsuccess: 67, 73
PS. 4	Model with mathematics.	This standard is covered throughout the program. Representative pages include: SE: 9-12, 45-48, 53-56, 85-88, 101-104, 147-150, 187-190, 207-210, 247-250, 267-270, 271-274, 309-312, 323-328, 339-342, 351-354, 369-372, 381-384, 393-396, 413-416, 425-428, 447-450, 459-462, 481-484, 497-500 TE: 9-12, 45-48, 53-56, 85-88, 101-104, 147-150, 187-190, 207-210, 247-250, 267-270, 271-274, 309-312, 323-328, 339-342, 351-354, 369-372, 381-384, 393-396, 413-416, 425-428, 447-450, 459-462, 481-484, 497-500 INsuccess: 1, 61, 85, 91, 97, 103, 109, 121, 127, 133, 151, 157, 163
PS. 5	Use appropriate tools strategically.	This standard is covered throughout the program. Representative pages include: SE: 65-68, 115-120, 157-162, 195-198, 215-218, 243-246, 271-274, 309-312, 339-342, 351-354, 369-372, 439-442, 463-466, 467-470, 481-484, 485-488, 497-500, 505-508 TE: 65-68, 115-120, 157-162, 195-198, 215-218, 243-246, 271-274, 309-312, 339-342, 351-354, 369-372, 439-442, 463-466, 467-470, 481-484, 485-488, 497-500, 505-508 INsuccess: 61, 79

Houghton Mifflin Harcourt Into Math ©2020 correlated to the Indiana Academic Standards: Mathematics (2020), Grade K

Standard	Descriptor	Citations
PS. 6	Attend to precision.	This standard is covered throughout the program. Representative pages include: SE: 13-16, 65-68, 115-120, 195-198, 247-250, 275-280, 323- 328, 343-346, 351-354, 429-432, 443-446, 459-462, 467470, 485-488, 505-508 TE: 13-16, 65-68, 115-120, 195-198, 247-250, 275-280, 323- 328, 343-346, 351-354, 429-432, 443-446, 459-462, 467470, 485-488, 505-508 INsuccess: 31, 37, 43, 49, 55, 73, 85, 91, 97, 103, 109, 121, 145
PS. 7	Look for and make use of structure.	This standard is covered throughout the program. Representative pages include: SE: $33-36,69-72,105-108,151-156,215-218,223-226,227-$ 230, 251-254, 281-286, 339-342, 351-354, 369-372, 393396, 409-412, 417-420, 425-428, 439-442, 451-454, 463466, 489-492, 505-508 TE: $33-36,69-72,105-108,151-156,215-218,223-226,227-$ 230, 251-254, 281-286, 339-342, 351-354, 369-372, 393396, 409-412, 417-420, 425-428, 439-442, 451-454, 463466, 489-492, 505-508 INsuccess: 13, 37, 43, 49, 55, 115
PS. 8	Look for and express regularity in repeated reasoning.	This standard is covered throughout the program. Representative pages include: SE: 21-24, 65-68, 109-114, 207-210, 227-230, 243-246, 271- 274, 313-316, 329-334, 343-346, 355-358, 377-380, 417- 420, 443-446, 451-454, 485-488, 497-500 TE: 21-24, 65-68, 109-114, 207-210, 227-230, 243-246, 271- 274, 313-316, 329-334, 343-346, 355-358, 377-380, 417- 420, 443-446, 451-454, 485-488, 497-500 INsuccess: 7, 19, 67, 139, 145, 157

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade K

Standard	Descriptor	Citations
NUMBER SENSE		
K.NS. 1	Count to at least 100 by ones and tens and count on by one from any number.	SE: 223-226, 227-230, 231-234 TE: 223A-226B, 227A-230B, 231A-234B
K.NS. 2	Write whole numbers from zero to 20 and recognize number words from zero to 10 . Represent a number of objects with a written numeral zero to 20 (with zero representing a count of no objects).	SE: 5-8, 9-12, 13-16, 17-20, 21-24, 29-32, 33-36, 37-40, 4144, 45-48, 187-190, 191-194, 195-198, 203-206, 207210, 211-214, 215-218, 459-462, 463-466, 467-470, 471474 TE: $5 \mathrm{~A}-8 \mathrm{~B}, 9 \mathrm{~A}-12 \mathrm{~B}, 13 \mathrm{~A}-16 \mathrm{~B}, 17 \mathrm{~A}-20 \mathrm{~B}$, , 21A-24B, 29A32B, 33A-36B, 37A-40B, 41A-44B, 45A-48B, 187A190B, 191A-194B, 195A-198B, 203A-206B, 207A-210B, 211A-214B, 215A-218B, 459A-462B, 463A-466, 467A470B, 471A-474B
K.NS. 3	Find the number that is one more than or one less than any whole number up to 20.	INsuccess: 7A, 7-12, 19A, 19-24
K.NS. 4	Say the number names in standard order when counting objects, pairing each object with one and only one number name and each number name with one and only one object. Understand that the last number name said describes the number of objects counted and that the number of objects is the same regardless of their arrangement or the order in which they were counted.	SE: $5-8,9-12,13-16,17-20,29-32,33-36,37-40,41-44$, 45-48, 81-84, 85-88, 89-92, 93-96, 187-190, 191-194, 195-198, 203-206, 207-210, 211-214, 215-218, 251254, 459-462, 463-466, 467-470, 471-474 TE: $5 \mathrm{~A}-8 \mathrm{~B}, 9 \mathrm{~A}-12 \mathrm{~B}, 13 \mathrm{~A}-16 \mathrm{~B}, 17 \mathrm{~A}-20 \mathrm{~B}, 29 \mathrm{~A}-32 \mathrm{~B}, 33 \mathrm{~A}-$ 36B, 37A-40B, 41A-44B, 45A-48B, 81A-84B, 85A88B, 89A-92B, 93A-96B, 187A-190B, 191A-194B, 195A-198B, 203A-206B, 207A-210B, 211A-214B, 215A-218B, 251A-254B, 459A-462B, 463A-466B, 467A-470B, 471A-474B

Houghton Mifflin Harcourt Into Math ©2020 correlated to the

Standard	Descriptor	Citations
K.NS. 5	Count up to 20 objects arranged in a line, a rectangular array, or a circle. Count up to 10 objects in a scattered configuration. Count out the number of objects, given a number from one to 20 .	SE: $5-8,9-12,13-16,17-20,29-32,33-36,37-40,41-44$, 45-48, 81-84, 85-88, 89-92, 93-96, 187-190, 191-194, 195-198, 203-206, 207-210, 211-214, 215-218, 251254, 459-462, 463-466, 467-470, 471-474 TE: $\quad 5 \mathrm{~A}-8 \mathrm{~B}, 9 \mathrm{~A}-12 \mathrm{~B}, 13 \mathrm{~A}-16 \mathrm{~B}, 17 \mathrm{~A}-20 \mathrm{~B}, 29 \mathrm{~A}-32 \mathrm{~B}, 33 \mathrm{~A}-$ 36B, 37A-40B, 41A-44B, 45A-48B, 81A-84B, 85A88B, 89A-92B, 93A-96B, 187A-190B, 191A-194B, 195A-198B, 203A-206B, 207A-210B, 211A-214B, 215A-218B, 251A-254B, 459A-462B, 463A-466B, 467A-470B, 471A-474B
K.NS. 6	Recognize sets of one to 10 objects in patterned arrangements and tell how many without counting.	INsuccess: 13A, 13-18
K.NS. 7	Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group (e.g. by using matching and counting strategies).	SE: 53-56, 57-60, 61-64, 65-68, 69-72, 239-242, 243-246, 247-250, 251-254, 255-258, 259-262 TE: 53A-56B, 57A-60B, 61A-64B, 65A-68B, 69A-72B, 239A-242B, 243A-246B, 247A-250B, 251A-254B, 255A-258B, 259A-262B
K.NS. 8	Compare the values of two numbers from 1 to 20 presented as written numerals.	SE: 259-262 TE: 259A-262B INsuccess: 25A, 25-30
K.NS. 9	Correctly use the words for comparison, including: one and many; none, some and all; more and less; most and least; and equal to, more than and less than.	SE: 53-56, 57-60, 61-64, 65-68, 69-72, 73-76, 239-242, 243-246, 247-250, 251-254, 255-258 TE: $53 \mathrm{~A}-56 \mathrm{~B}, 57 \mathrm{~A}-60 \mathrm{~B}, 61 \mathrm{~A}-64 \mathrm{~B}, 65 \mathrm{~A}-68 \mathrm{~B}, 69 \mathrm{~A}-72 \mathrm{~B}$, 73A-76B, 239A-242B, 243A-246B, 247A-250B, 251A254B, 255A-258B INsuccess: 25A, 25-30, 121A, 121-126

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade K

Standard	Descriptor	Citations
K.NS. 10	Separate sets of 10 or fewer objects into equal groups.	INsuccess: 1A, 1-6 This standard is additionally covered in Grade 3, see pages: SE: 143-146 TE: 143A-143D, 143-146
K.NS. 11	Develop initial understandings of place value and the base 10 number system by showing equivalent forms of whole numbers from 10 to 20 as groups of tens and ones using objects and drawings.	$\begin{aligned} \text { SE: } & 439-442,443-446,447-450,451-454,459-462,463-466, \\ & 467-470 \\ \text { TE: } & 439 \mathrm{~A}-442 \mathrm{~B}, 443 \mathrm{~A}-446 \mathrm{~B}, 447 \mathrm{~A}-450 \mathrm{~B}, 451 \mathrm{~A}-454 \mathrm{~B}, \\ & 459 \mathrm{~A}-462 \mathrm{~B}, 463 \mathrm{~A}-466 \mathrm{~B}, 467 \mathrm{~A}-470 \mathrm{~B} \end{aligned}$
COMPUTATION AND ALGEBRAIC THINKING		
K.CA. 1	Use objects, drawings, mental images, sounds, etc., to represent addition and subtraction within 10.	$\begin{array}{\|rl} \hline \text { SE: } & 101-104,105-108,109-114,115-120,121-126,127-132, \\ & 133-138,143-146,147-150,151-156,157-162,163-168, \\ & 169-174,175-180,267-270,271-274,275-280,281-286, \\ & 287-292,293-298,299-304,309-312,313-316,317-322, \\ & 232-328,329-334 \\ \text { TE: } & 101 \mathrm{~A}-104 \mathrm{~B}, 105 \mathrm{~A}-108 \mathrm{~B}, 109 \mathrm{~A}-114 \mathrm{~B}, 115 \mathrm{~A}-120 \mathrm{~B}, \\ & 121 \mathrm{~A}-126 \mathrm{~B}, 127 \mathrm{~A}-132 \mathrm{~B}, 133 \mathrm{~A}-138 \mathrm{~B}, 143 \mathrm{~A}-146 \mathrm{~B}, \\ & 147 \mathrm{~A}-150 \mathrm{~B}, 151 \mathrm{~A}-156 \mathrm{~B}, 157 \mathrm{~A}-162 \mathrm{~B}, 163 \mathrm{~A}-168 \mathrm{~B}, \\ & 169 \mathrm{~A}-174 \mathrm{~B}, 175 \mathrm{~A}-180 \mathrm{~B}, 267 \mathrm{~A}-270 \mathrm{~B}, 271 \mathrm{~A}-274 \mathrm{~B}, \\ & \text { 275A-280B, 281A-286B, 287A-292B, 293A-298B, } \\ & \text { 299A-304B, 309A-312B, 313A-316B, 317A-322B, } \\ & \text { 332A-328B, 329A-334B } \end{array}$

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade K

Standard	Descriptor	Citations
K.CA. 2	Solve real-world problems that involve addition and subtraction within 10 (e.g., by using objects or drawings to represent the problem).	SE: $101-104,105-108,109-114,115-120,121-126,127-132$, $133-138,143-146,147-150,151-156,157-162,163-168$, $169-174,175-180,267-270,271-274,275-280,281-286$, $287-292,293-298,299-304,309-312,313-316,317-322$, $232-328,329-334$ TE: $101 \mathrm{~A}-104 \mathrm{~B}, 105 \mathrm{~A}-108 \mathrm{~B}, 109 \mathrm{~A}-114 \mathrm{~B}, 115 \mathrm{~A}-120 \mathrm{~B}$, $121 \mathrm{~A}-126 \mathrm{~B}, 127 \mathrm{~A}-132 \mathrm{~B}, 133 \mathrm{~A}-138 \mathrm{~B}, 143 \mathrm{~A}-146 \mathrm{~B}$, $147 \mathrm{~A}-150 \mathrm{~B}, 151 \mathrm{~A}-156 \mathrm{~B}, 157 \mathrm{~A}-162 \mathrm{~B}, 163 \mathrm{~A}-168 \mathrm{~B}$, $169 \mathrm{~A}-174 \mathrm{~B}, 175 \mathrm{~A}-180 \mathrm{~B}, 267 \mathrm{~A}-270 \mathrm{~B}, 271 \mathrm{~A}-274 \mathrm{~B}$, $275 \mathrm{~A}-280 \mathrm{~B}, 281 \mathrm{~A}-286 \mathrm{~B}, 287 \mathrm{~A}-292 \mathrm{~B}, 293 \mathrm{~A}-298 \mathrm{~B}$, $299 \mathrm{~A}-304 \mathrm{~B}, 309 \mathrm{~A}-312 \mathrm{~B}, 313 \mathrm{~A}-316 \mathrm{~B}, 317 \mathrm{~A}-322 \mathrm{~B}$, 332A-328B, 329A-334B
K.CA. 3	Use objects, drawings, etc., to decompose numbers less than or equal to 10 into pairs in more than one way, and record each decomposition with a drawing or an equation (e.g., $5=2$ +3 and $5=4+1$). [In Kindergarten, students should see equations and be encouraged to trace them, however, writing equations is not required.]	SE: 339-342, 343-346, 347-350, 351-354 TE: 339A-342B, 343A-346B, 347A-350B, 351A-354B
K.CA. 4	Find the number that makes 10 when added to the given number for any number from one to nine (e.g., by using objects or drawings), and record the answer with a drawing or an equation.	SE: 351-354, 355-358 TE: 351A-354B, 355A-358B
K.CA. 5	Create, extend, and give an appropriate rule for simple repeating and growing patterns with numbers and shapes.	$\begin{aligned} \hline \text { INsuccess: } & \text { 127A, } 127-132,133 \mathrm{~A}, 133-138,139 \mathrm{~A}, 139-144, \\ & \text { 145A, 145-150, 151A, 151-156, 157A 157-162, } \\ & 163 \mathrm{~A}, 163-168 \end{aligned}$

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade K

Standard	Descriptor	Citations
GEOMETRY		
K.G. 1	Describe the positions of objects and geometric shapes in space using the terms inside, outside, between, above, below, near, far, under, over, up, down, behind, in front of, next to, to the left of and to the right of.	SE: 389-392, 393-396, 397-400 TE: 389A-392B, 393A-396B, 397A-400B INsuccess: 31A, 31-36, 37A, 37-42, 43A, 43-48, 49A, 49-54, 55A, 55-60
K.G. 2	Compare two- and three-dimensional shapes in different sizes and orientations, using informal language to describe their similarities, differences, parts (e.g., number of sides and vertices/"corners") and other attributes (e.g., having sides of equal length).	$\begin{aligned} \text { SE: } & 365-368,369-372,373-376,377-380,405-408,409-412, \\ & 413-416,417-420,421-424,429-432,481-484,485-488, \\ & 489-492,497-500,501-504,505-508 \\ \text { TE: } & 365 \mathrm{~A}-368 \mathrm{~B}, 369 \mathrm{~A}-372 \mathrm{~B}, 373 \mathrm{~A}-376 \mathrm{~B}, 377 \mathrm{~A}-380 \mathrm{~B}, \\ & 405 \mathrm{~A}-408 \mathrm{~B}, 409 \mathrm{~A}-412 \mathrm{~B}, 413 \mathrm{~A}-416 \mathrm{~B}, 417 \mathrm{~A}-420 \mathrm{~B}, \\ & 421 \mathrm{~A}-424 \mathrm{~B}, 429 \mathrm{~A}-432 \mathrm{~B}, 481 \mathrm{~A}-484 \mathrm{~B}, 485 \mathrm{~A}-488 \mathrm{~B}, \\ & 489 \mathrm{~A}-492 \mathrm{~B}, 497 \mathrm{~A}-500 \mathrm{~B}, 501 \mathrm{~A}-504 \mathrm{~B}, 505 \mathrm{~A}-508 \mathrm{~B} \end{aligned}$
K.G. 3	Model shapes in the world by composing shapes from objects (e.g., sticks and clay balls) and drawing shapes.	$\begin{array}{ll} \hline \text { SE: } & 381-384,405-408,409-412,413-416,417-420,425-428 \\ \text { TE: } & 381 \mathrm{~A}-384 \mathrm{~B}, 405 \mathrm{~A}-408 \mathrm{~B}, 409 \mathrm{~A}-412 \mathrm{~B}, 413 \mathrm{~A}-416 \mathrm{~B}, \\ & 417 \mathrm{~A}-420 \mathrm{~B}, 425 \mathrm{~A}-428 \mathrm{~B} \end{array}$
K.G. 4	Compose simple geometric shapes to form larger shapes (e.g., create a rectangle composed of two triangles).	SE: 425-428 TE: 425A-428B
MEASUREMENT		
K.M. 1	Make direct comparisons of the length, capacity, weight, and temperature of objects, and recognize which object is shorter, longer, taller, lighter, heavier, warmer, cooler, or holds more.	SE: 481-484, 485-488, 489-492, 497-500, 501-504, 505-508 TE: 481A-484B, 485A-488B, 489A-492B, 497A-500B, 501A-504B, 505A-508B INsuccess: 61A, 61-66, 67A, 67-72, 73A, 73-78, 79A, 79-84
K.M. 2	Understand concepts of time, including: morning, afternoon, evening, today, yesterday, tomorrow, day, week, month, and year. Understand that clocks and calendars are tools that measure time.	INsuccess: 85A, 85-90, 91A, 91-96, 97A, 97-102, 103A, 103108, 109A, 109-114, 115A, 115-120

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade K

Standard	Descriptor	Citations

DATA ANALYSIS

K.DA. $1 \quad$ Identify, sort, and classify objects by size, number, and other

SE: 81-84, 85-88, 89-92, 93-96 attributes. Identify objects that do not belong to a particular group and explain the reasoning used.

Houghton Mifflin Harcourt

Into Math, Grade 1 ©2020
correlated to the
Indiana Academic Standards: Mathematics (2014)
Grade 1

Standard	Descriptor	Citations
PROCESS STANDARDS FOR MATHEMATICS		
PS. 1	Make sense of problems and persevere in solving them.	This standard is covered throughout the program. Representative pages include: SE: 29-32, 57-60, 97-102, 133-137, 159-164, 187-192, 235240, 269-272, 287-290, 307-312, 337-342, 357-360, 399-402, 423-426, 443-446, 471-474, 493-496, 513-516 TE: 29-32, 57-60, 97-102, 133-137, 159-164, 187-192, 235240, 269-272, 287-290, 307-312, 337-342, 357-360, 399-402, 423-426, 443-446, 471-474, 493-496, 513-516
PS. 2	Reason abstractly and quantitatively.	This standard is covered throughout the program. Representative pages include: SE: 19-24, 67-72, 89-92, 121-124, 147-150, 177-180, 187- 192, 219-224, 225-230, 257-260, 265-268, 287-290, 299-302, 303-306, 337-342, 379-382, 395-398, 459-462 TE: 19-24, 67-72, 89-92, 121-124, 147-150, 177-180, 187- 192, 219-224, 225-230, 257-260, 265-268, 287-290, 299-302, 303-306, 337-342, 379-382, 395-398, 459-462

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2014), Grade 1

Standard	Descriptor	Citations
PS. 3	Construct viable arguments and critique the reasoning of others.	This standard is covered throughout the program. Representative pages include: $\begin{array}{ll} \text { SE: } & 5-8,9-14,33-38,47-52,53-56,97-102,117-120,147- \\ & 150,173-176,207-210,245-248,261-265,279-282, \\ & 303-306,317-320,329-332,337-342,399-402,417-422, \\ & 435-438,459-462,481-484 \\ \text { TE: } & 5-8,9-14,33-38,47-52,53-56,97-102,117-120,147- \\ & 150,173-176,207-210,245-248,261-265,279-282, \\ & 303-306,317-320,329-332,337-342,399-402,417-422, \\ & 435-438,459-462,481-484 \end{array}$
PS. 4	Model with mathematics.	This standard is covered throughout the program. Representative pages include: $\begin{array}{ll} \text { SE: } & 5-8,9-14,47-52,53-56,67-72,93-96,137-140,159- \\ & 164,197-202,235-240,265-269,279-282,299-302, \\ & 313-316,325-328,353-356,427-430,471-474 \\ \text { TE: } & 5-8,9-14,47-52,53-56,67-72,93-96,137-140,159- \\ & 164,197-202,235-240,265-269,279-282,299-302, \\ & 313-316,325-328,353-356,427-430,471-474 \end{array}$
PS. 5	Use appropriate tools strategically.	This standard is covered throughout the program. Representative pages include: SE: 9-14, 19-24, 61-66, 67-72, 81-84, 97-102, 137-140, 147-150, 187-192, 211-214, 257-261, 287-290, 295-298, 317-320, 361-364, 399-402, 427-430, 443-446, 493-496 TE: 9-14, 19-24, 61-66, 67-72, 81-84, 97-102, 137-140, 147-150, 187-192, 211-214, 257-261, 287-290, 295-298, 317-320, 361-364, 399-402, 427-430, 443-446, 493-496

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2014), Grade 1

Standard	Descriptor	Citations
PS. 6	Attend to precision.	This standard is covered throughout the program. Representative pages include: SE: 33-38, 47-52, 67-72, 97-103, 121-124, 151-154, 159- 164, 249-252, 269-272, 313-316, 325-329, 379-382, 391-394, 443-446, 471-474, 501-504 TE: 33-38, 47-52, 67-72, 97-103, 121-124, 151-154, 159- 164, 249-252, 269-272, 313-316, 325-329, 379-382, 391-394, 443-446, 471-474, 501-504
PS. 7	Look for and make use of structure.	This standard is covered throughout the program. Representative pages include: $\begin{array}{ll} \text { SE: } & 15-18,19-24,25-28,47-52,85-88,103-106,129-132, \\ & 173-176,219-224,257-260,279-282,283-286,303-306, \\ & 307-312,333-336,369-374,423-426,435-438,459-462, \\ & 513-516 \\ \text { TE: } & 15-18,19-24,25-28,47-52,85-88,103-106,129-132, \\ & 173-176,219-224,257-260,279-282,283-286,303-306, \\ & 307-312,333-336,369-374,423-426,435-438,459-462, \\ & 513-516 \end{array}$
PS. 8	Look for and express regularity in repeated reasoning.	This standard is covered throughout the program. Representative pages include: SE: 19-24, 29-32, 57-60, 61-66, 89-92, 117-120, 155-158, 193-196, 225-230, 269-272, 307-312, 313-316, 337-342, 375-378, 427-430, 435-438, 505-508 TE: 19-24, 29-32, 57-60, 61-66, 89-92, 117-120, 155-158, 193-196, 225-230, 269-272, 307-312, 313-316, 337-342, 375-378, 427-430, 435-438, 505-508

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2014), Grade 1

Standard	Descriptor	Citations
NUMBER SENSE		
1.NS. 1	Count to at least 120 by ones, fives, and tens from any given number. In this range, read and write numerals and represent a number of objects with a written numeral.	Students count forward by ones and tens only. SE: 295-298, 313-316, 317-320 TE: 295A-298B, 313A-316B, 317A-320B
1.NS. 2	Understand that 10 can be thought of as a group of ten ones — called a "ten." Understand that the numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, seven, eight, or nine ones. Understand that the numbers 10 , $20,30,40,50,60,70,80,90$ refer to one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones).	$\begin{array}{ll} \hline \text { SE: } & 279-282,283-286,287-290,299-302,303-306,307-312, \\ & 313-316,317-320 \\ \text { TE: } & 279 A-282 \mathrm{~B}, 283 \mathrm{~A}-286 \mathrm{~B}, 287 \mathrm{~A}-290 \mathrm{~B}, 299 \mathrm{~A}-302 \mathrm{~B}, \\ & 303 \mathrm{~A}-306 \mathrm{~B}, 307 \mathrm{~A}-312 \mathrm{~B}, 313 \mathrm{~A}-316 \mathrm{~B}, 317 \mathrm{~A}-320 \mathrm{~B} \end{array}$
1.NS. 3	Match the ordinal numbers first, second, third, etc., with an ordered set up to 10 items.	This standard is beyond the scope of this program.
1.NS. 4	Use place value understanding to compare two two-digit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols $>,=$, and $<$.	SE: 325-328, 329-332, 333-336, 337-342 TE: 325A-328B, 329A-332B, 333A-336B, 337A-342B
1.NS. 5	Find mentally 10 more or 10 less than a given two-digit number without having to count, and explain the thinking process used to get the answer.	SE: 379-382 TE: 379A-382B
1.NS. 6	Show equivalent forms of whole numbers as groups of tens and ones, and understand that the individual digits of a twodigit number represent amounts of tens and ones.	SE: 299-302, 303-306, 307-312 TE: 299A-302B, 303A-306B, 307A-312B

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2014), Grade 1

Standard	Descriptor	Citations
COMPUTATION AND ALGEBRAIC THINKING		
1.CA. 1	Demonstrate fluency with addition facts and the corresponding subtraction facts within 20. Use strategies such as counting on; making ten (e.g., $8+6=8+2+4=10$ $+4=14$); decomposing a number leading to a ten (e.g., $13-$ $4=13-3-1=10-1=9$); using the relationship between addition and subtraction (e.g., knowing that $8+4=12$, one knows $12-8=4$); and creating equivalent but easier or known sums (e.g., adding $6+7$ by creating the known equivalent $6+6+1=12+1=13$). Understand the role of 0 in addition and subtraction.	$\begin{array}{ll}\text { SE: } & 103-106,137-140,403-406 \\ \text { TE: } & 103 A-106 B, 137 A-140 B, 403 A-406 B\end{array}$
1.CA. 2	Solve real-world problems involving addition and subtraction within 20 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem).	SE: 5-8, 9-14, 15-18, 19-24, 25-28, 29-32, 33-38, 43-46, 47-52, 53-56, 57-60, 61-66, 67-72, 77-80, 81-84, 85-88, 89-92, 93-96, 97-102, 111-116, 117-120, 121-124, 125128, 129-132, 133-136, 147-150, 151-154, 155-158, 159-164, 169-172, 173-176, 177-180, 181-186, 187-192, 193-196, 197-202, 207-210, 211-214, 215-218, 219-224, 225-230, 231-234, 235-240 TE: $5 \mathrm{~A}-8 \mathrm{~B}, 9 \mathrm{~A}-14 \mathrm{~B}, 15 \mathrm{~A}-18 \mathrm{~B}, 19 \mathrm{~A}-24 \mathrm{~B}, 25 \mathrm{~A}-28 \mathrm{~B}, 29 \mathrm{~A}-$ 32B, 33A-38B, 43A-46B, 47AB-52, 53A-56B, 57A-60B, 61A-66B, 67A-72B, 77A-80B, 81A-84B, 85A-88B, 89A-92B, 93A-96B, $97 \mathrm{~A}-102 \mathrm{~B}, 111 \mathrm{~A}-116 \mathrm{~B}, 117 \mathrm{~A}-$ 120B, 121A-124B, 125A-128B, 129A-132B, 133A136B, 147A-150B, 151A-154B, 155A-158B, 159A164B, 169A-172B, 173A-176B, 177A-180B, 181A186B, 187A-192B, 193A-196B, 197A-202B, 207A210B, 211A-214B, 215A-218B, 219A-224B, 225A230B, 231A-234B, 235A-240B
1.CA. 3	Create a real-world problem to represent a given equation involving addition and subtraction within 20.	This standard is covered in Grade K.
1.CA. 4	Solve real-world problems that call for addition of three whole numbers whose sum is within 20 (e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem).	SE: 85-88, 89-92, 93-96, 151-154 TE: 85A-88B, 8A9-92B, 93A-96B, 151A-154B

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2014), Grade 1

Standard	Descriptor	Citations
1.CA. 5	Add within 100, including adding a two-digit number and a one-digit number, and adding a two-digit number and a multiple of 10 , using models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; describe the strategy and explain the reasoning used. Understand that in adding two-digit numbers, one adds tens and tens, ones and ones, and that sometimes it is necessary to compose a ten.	$\begin{array}{ll} \text { SE: } & 349-352,353-356,357-360,361-364,365-368,369-374, \\ & 375-378,387-390,391-394,399-402,407-410 \\ \text { TE: } & 349 \mathrm{~A}-352 \mathrm{~B}, 353 \mathrm{~A}-356 \mathrm{~B}, 357 \mathrm{~A}-360 \mathrm{~B}, 361 \mathrm{~A}-364 \mathrm{~B}, \\ & \text { 365A-368B, 369A-374B, 375A-378B, 387A-390B, } \\ & \text { 391A-394B, 399A-402B, 407A-410B } \end{array}$
1.CA. 6	Understand the meaning of the equal sign, and determine if equations involving addition and subtraction are true or false (e.g., Which of the following equations are true and which are false? $6=6,7=8-1,5+2=2+5,4+1=5+2$).	SE: 5-8, 43-46, 97-102, 333-336 TE: 5A-8B, 43A-46B, 97A-102B, 333A-336B
1.CA. 7	Create, extend, and give an appropriate rule for number patterns using addition within 100.	This standard is covered in Grade 2.
GEOMETRY		
1.G. 1	Identify objects as two-dimensional or three-dimensional. Classify and sort two-dimensional and three-dimensional objects by shape, size, roundness and other attributes. Describe how two-dimensional shapes make up the faces of three-dimensional objects.	This standard is covered in Grade 2.
1.G. 2	Distinguish between defining attributes of two- and threedimensional shapes (e.g., triangles are closed and threesided) versus nondefining attributes (e.g., color, orientation, overall size). Create and draw two-dimensional shapes with defining attributes.	SE: 417-422, 435-438, 439-442 TE: 417A-422B, 435A-438B, 439A-442B

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2014), Grade 1

Standard	Descriptor	Citations
1.G. 3	Use two-dimensional shapes (rectangles, squares, trapezoids, triangles, half-circles, and quarter-circles) or threedimensional shapes (cubes, right rectangular prisms, right circular cones, and right circular cylinders) to create a composite shape, and compose new shapes from the composite shape. [In grade 1, students do not need to learn formal names such as "right rectangular prism."]	$\begin{array}{ll} \hline \text { SE: } & 423-426,427-430,443-446,447-450,451-454 \\ \text { TE: } & 423 \mathrm{~A}-426 \mathrm{~B}, 427 \mathrm{~A}-430 \mathrm{~B}, 443 \mathrm{~A}-446 \mathrm{~B}, 447 \mathrm{~A}-450 \mathrm{~B}, \\ & 451 \mathrm{~A}-454 \mathrm{~B} \end{array}$
1.G. 4	Partition circles and rectangles into two and four equal parts; describe the parts using the words halves, fourths, and quarters; and use the phrases half of, fourth of, and quarter of. Describe the whole as two of, or four of, the parts. Understand for partitioning circles and rectangles into two and four equal parts that decomposing into equal parts creates smaller parts.	SE: 459-462, 463-466, 467-470, 471-474 TE: $459 \mathrm{~A}-462 \mathrm{~B}, 463 \mathrm{~A}-466 \mathrm{~B}, 467 \mathrm{~A}-470 \mathrm{~B}, 471 \mathrm{~A}-474 \mathrm{~B}$
MEASUREMENT		
1.M. 1	Use direct comparison or a nonstandard unit to compare and order objects according to length, area, capacity, weight, and temperature.	Students measure and compare length, height, and weight. SE: 481-484, 485-488, 489-492, 493-496 TE: 481A-484B, 485A-488B, 489A-492B, 493A-496B
1.M. 2	Tell and write time to the nearest half-hour and relate time to events (before/after, shorter/longer) using analog clocks. Understand how to read hours and minutes using digital clocks.	SE: 501-504, 505-508, 509-512, 513-516 TE: 501A-504B, 505A-508B, 509A-512B, 513A-516B
1.M. 3	Find the value of a collection of pennies, nickels, and dimes.	This standard is covered in Grade 2.
DATA ANALYSIS		
1.DA. 1	Organize and interpret data with up to three choices (What is your favorite fruit? apples, bananas, oranges); ask and answer questions about the total number of data points, how many in each choice, and how many more or less in one choice compared to another.	$\begin{array}{ll} \text { SE: } & 245-248,249-252,253-256,257-260,261-264,265- \\ & 268,269-272 \\ \text { TE: } & 245 A-248 B, 249 A-252 B, 253 A-256 B, 257 A-260 B, \\ & 261 A-264 B, 265 A-268 B, 269 A-272 B \end{array}$

Houghton Mifflin Harcourt

Into Math, Grade 2 ©2020
correlated to the
Indiana Academic Standards: Mathematics (2020)
Grade 2

Standard	Descriptor	Citations
PROCESS STANDARDS FOR MATHEMATICS		
PS. 1	Make sense of problems and persevere in solving them.	This standard is covered throughout the program. Representative pages include: SE: 5-8, 29-32, 53-56, 57-60, 69-72, 77-80, 91-94, 131- 134, 155-158, 175-178, 197-202, 239-242, 291-298, 343-348, 359-362, 363-366, 391-394, 453-456, 507- 510, 555-564 TE: 5-8, 29-32, 53-56, 57-60, 69-72, 77-80, 91-94, 131- 134, 155-158, 175-178, 197-202, 239-242, 291-298, 343-348, 359-362, 363-366, 391-394, 453-456, 507- 510, 555-564 INsuccess: 1, 31, 49
PS. 2	Reason abstractly and quantitatively.	This standard is covered throughout the program. Representative pages include: SE: 5-8, 9-14, 41-44, 69-72, 77-80, 103-106, 127-130, 139- 142, 155-158, 165-168, 189-192, 197-202, 231-234, 251-254, 263-266, 279-284, 315-320, 367-372, 429- 432, 517-522 TE: 5-8, 9-14, 41-44, 69-72, 77-80, 103-106, 127-130, 139- 142, 155-158, 165-168, 189-192, 197-202, 231-234, 251-254, 263-266, 279-284, 315-320, 367-372, 429- 432, 517-522 INsuccess: 7, 19, 25, 39, 43, 55, 61, 79, 85

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 2

Standard	Descriptor	Citations
PS. 3	Construct viable arguments and critique the reasoning of others.	This standard is covered throughout the program. Representative pages include: $\begin{aligned} \text { SE: } & 15-18,19-24,73-76,107-110,151-154,169-174,189- \\ & 192,221-224,255-258,279-284,291-294,303-306, \\ & 321-326,343-348,419-422,499-502,517-522 \\ \text { TE: } & 15-18,19-24,73-76,107-110,151-154,169-174,189- \\ & 192,221-224,255-258,279-284,291-294,303-306, \\ & 321-326,343-348,419-422,499-502,517-522 \end{aligned}$
PS. 4	Model with mathematics.	This standard is covered throughout the program. Representative pages include: SE: 45-48, 53-56, 57-60, 103-106, 119-122, 147-150, 169- 174, 207-210, 231-234, 251-254, 271-274, 331-336, 343-348, 349-354, 359-362, 367-372, 407-410, 541-544 TE: 45-48, 53-56, 57-60, 103-106, 119-122, 147-150, 169- 174, 207-210, 231-234, 251-254, 271-274, 331-336, 343-348, 349-354, 359-362, 367-372, 407-410, 541-544 INsuccess: 31, 73, 79, 85
PS. 5	Use appropriate tools strategically.	This standard is covered throughout the program. Representative pages include: SE: 29-32, 45-48, 65-68, 69-72, 131-134, 165-168, 179- 184, 207-210, 217-221, 231-234, 235-238, 255-258, 271-274, 303-306, 311-314, 415-418, 433-438, 463- 466, 503-506 TE: 29-32, 45-48, 65-68, 69-72, 131-134, 165-168, 179- 184, 207-210, 217-221, 231-234, 235-238, 255-258, 271-274, 303-306, 311-314, 415-418, 433-438, 463- 466, 503-506 INsuccess: 13, 19, 37, 43, 49, 55, 61, 67, 73

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 2

Standard	Descriptor	Citations
PS. 6	Attend to precision.	This standard is covered throughout the program. Representative pages include: SE: $9-14,15-18,19-24,45-48,69-72,73-76,147-150,169-$ 174, 189-192, 193-196, 197-202, 207-210, 217-220, 259-262, 271-274, 291-294, 315-320, 379-382, 433- 438, 507-510, 561-564 TE: 9-14, 15-18, 19-24, 45-48, 69-72, 73-76, 147-150, 169- 174, 189-192, 193-196, 197-202, 207-210, 217-220, 259-262, 271-274, 291-294, 315-320, 379-382, 433- 438, 507-510, 561-564 INsuccess: 13, 25, 31, 37, 43, 55, 61, 67
PS. 7	Look for and make use of structure.	This standard is covered throughout the program. Representative pages include: SE: 9-14, 49-52, 53-56, 57-60, 73-76, 81-84, 103-106, 131- 134, 155-158, 165-168, 193-196, 197-202, 207-210, 247-250, 255-258, 271-274, 291-294, 303-306, 387- 390, 495-498, 561-564 TE: 9-14, 49-52, 53-56, 57-60, 73-76, 81-84, 103-106, 131- 134, 155-158, 165-168, 193-196, 197-202, 207-210, 247-250, 255-258, 271-274, 291-294, 303-306, 387- 390, 495-498, 561-564 INsuccess: 1, 13, 61

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 2

Standard	Descriptor	Citations
PS. 8	Look for and express regularity in repeated reasoning.	This standard is covered throughout the program. Representative pages include: SE: 5-8, 9-14, 19-24, 91-94, 95-98, 99-102, 123-126, 131- 134, 139-142, 143-146, 169-174, 179-184, 197-202, 235-238, 263-266, 285-290, 315-320, 449-452, 491- 494, 533-536 TE: 5-8, 9-14, 19-24, 91-94, 95-98, 99-102, 123-126, 131- 134, 139-142, 143-146, 169-174, 179-184, 197-202, 235-238, 263-266, 285-290, 315-320, 449-452, 491- 494, 533-536 INsuccess: 7, 13
NUMBER SENSE		
2.NS. 1	Count by ones, twos, fives, tens, and hundreds up to at least 1,000 from any given number.	$\begin{array}{ll} \text { SE: } & 139-142,147-150,165-168,231-234,235-238,239- \\ & 242 \\ \text { TE: } & 139 A-142 B, 147 A-150 B, 165 A-168 B, 231 A-234 B, \\ & 235 A-238 B, 239 A-242 B \end{array}$ INsuccess: 7A, 7-12
2.NS. 2	Read and write whole numbers up to 1,000 . Use words, models, standard form and expanded form to represent and show equivalent forms of whole numbers up to 1,000 .	$\begin{array}{ll} \hline \text { SE: } & 115-118,119-122,123-126,127-130,131-134 \\ \text { TE: } & 115 \mathrm{~A}-118 \mathrm{~B}, 119 \mathrm{~A}-122 \mathrm{~B}, 123 \mathrm{~A}-126 \mathrm{~B}, 127 \mathrm{~A}-130 \mathrm{~B}, \\ & 131 \mathrm{~A}-134 \mathrm{~B} \end{array}$
2.NS. 3	Plot and compare whole numbers up to 1,000 on a number line.	INsuccess: 19A, 19-24
2.NS. 4	Match the ordinal numbers first, second, third, etc., with an ordered set up to 30 items.	INsuccess: 1A, 1-6

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 2

Standard	Descriptor	Citations
2.NS. 5	Determine whether a group of objects (up to 20) has an odd or even number of members (e.g., by placing that number of objects in two groups of the same size and recognizing that for even numbers no object will be left over and for odd numbers one object will be left over, or by pairing objects or counting them by 2 s).	SE: 41-44, 45-48 TE: 41A-44B, 45A-48B
2.NS. 6	Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones (e.g., 706 equals 7 hundreds, 0 tens, and 6 ones). Understand that 100 can be thought of as a group of ten tens - called a "hundred." Understand that the numbers $100,200,300,400,500,600$, 700, 800, 900 refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones).	$\begin{array}{ll} \text { SE: } & 91-94,95-98,99-102,103-106,107-110,115-118, \\ & 119-122,123-126,127-130,131-134,143-146,151- \\ & 154,155-158 \\ \text { TE: } & \text { 91A-94B, 95A-98B, 99A-102B, 103A-106B, 107A- } \\ & \text { 110B, 115A-118B, 119A-122B, 123A-126B, 127A- } \\ & \text { 130B, 131A-134B, 143A-146B, 151A-154B, 155A- } \\ & \text { 158B } \end{array}$
2.NS. 7	Use place value understanding to compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits, using >, =, and < symbols to record the results of comparisons.	SE: 151-154, 155-158 TE: 151A-154B, 155A-158B
COMPUTATION AND ALGEBRAIC THINKING		
2.CA. 1	Add and subtract fluently within 100.	$\begin{array}{ll} \hline \text { SE: } & 5-8,9-14,15-18,19-24,25-28,29-32,33-36,231- \\ & 234,235-238,239-242,247-250,251-254,255-258, \\ & 259-262,263-266,271-274,275-278,279-284,285- \\ & 290,291-294,295-298,303-306,307-310,311-314, \\ & 315-320,321-326,343-348,349-354,359-362,363- \\ & 366,367-372 \\ \text { TE: } & \text { 5A-8B, 9A-14B, 15A-18B, 19A-24B, 25A-28B, 29A- } \\ \text { 32B, 33A-36B, 231A-234B, 235A-238B, 239A-242B, } \\ \text { 247A-250B, 251A-254B, 255A-258B, 259A-262B, } \\ \text { 263A-266B, 271A-274B, 275A-278B, 279A-284B, } \\ \text { 285A-290B, 291A-294B, 295A-298B, 303A-306B, } \\ \text { 307A-310B, 311A-314B, 315A-320B, 321A-326B, } \\ \text { 343A-348B, 349A-354B, 359A-362B, 363A-366B, } \\ \text { 367A-372B } \end{array}$

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 2

Standard	Descriptor	Citations
2.CA. 2	Solve real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all parts of the addition or subtraction problem (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Use estimation to decide whether answers are reasonable in addition problems.	SE: 5-8, 9-14, 15-18, 19-24, 25-28, 29-32, 33-36, 231234, 235-238, 239-242, 247-250, 251-254, 255-258, 259-262, 263-266, 271-274, 275-278, 279-284, 285290, 291-294, 295-298, 303-306, 307-310, 311-314, 315-320, 321-326, 343-348, 349-354, 359-362, 363366, 367-372 TE: 5A-8B, 9A-14B, 15A-18B, 19A-24B, 25A-28B, 29A32B, 33A-36B, 231A-234B, 235A-238B, 239A-242B, 247A-250B, 251A-254B, 255A-258B, 259A-262B, 263A-266B, 271A-274B, 275A-278B, 279A-284B, 285A-290B, 291A-294B, 295A-298B, 303A-306B, 307A-310B, 311A-314B, 315A-320B, 321A-326B, 343A-348B, 349A-354B, 359A-362B, 363A-366B, 367A-372B INsuccess: 25A, 25-30
2.CA. 3	Solve real-world problems involving addition and subtraction within 100 in situations involving lengths that are given in the same units (e.g., by using drawings, such as drawings of rulers, and equations with a symbol for the unknown number to represent the problem).	SE: 495-498, 503-506 TE: 495A-498B, 503A-506B
2.CA. 4	Add and subtract within 1000, using models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; describe the strategy and explain the reasoning used. Understand that in adding or subtracting three-digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones, and that sometimes it is necessary to compose or decompose tens or hundreds.	$\begin{array}{ll} \hline \text { SE: } & 379-382,383-386,387-390,391-394,399-402,403- \\ & 406,407-410,411-414,415-418,419-422 \\ \text { TE: } & 379 \mathrm{~A}-382 \mathrm{~B}, 383 \mathrm{~A}-386 \mathrm{~B}, 387 \mathrm{~A}-390 \mathrm{~B}, 391 \mathrm{~A}-394 \mathrm{~B}, \\ & 399 \mathrm{~A}-402 \mathrm{~B}, 403 \mathrm{~A}-406 \mathrm{~B}, 407 \mathrm{~A}-410 \mathrm{~B}, 411 \mathrm{~A}-414 \mathrm{~B}, \\ & 415 \mathrm{~A}-418 \mathrm{~B}, 419 \mathrm{~A}-422 \mathrm{~B} \end{array}$
2.CA. 5	Use addition to find the total number of objects arranged in rectangular arrays with up to 5 rows and up to 5 columns; write an equation to express the total as a sum of equal groups.	SE: 49-52, 53-56, 57-60 TE: 49A-52B, 53A-56B, 57A-60B

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 2

Standard	Descriptor	Citations
2.CA. 6	Show that the order in which two numbers are added (commutative property) and how the numbers are grouped in addition (associative property) will not change the sum. These properties can be used to show that numbers can be added in any order.	SE: $9-14,33-36,231-234,235-238,239-242,247-250$, $255-258,259-262,271-274,303-306,307-310,315-$ 320, 321-326 TE: 9A-14B, 33A-36B, 231A-234B, 235A-238B, 239A- 242B, 247A-250B, 255A-258B, 259A-262B, 271A- 274B, 303A-306B, 307A-310B, 315A-320B, 321A- 326B
2.CA. 7	Create, extend, and give an appropriate rule for number patterns using addition and subtraction within 1000.	SE: 147-150 TE: 147A-150B INsuccess: 13A, 13-18
GEOMETRY		
2.G. 1	Identify, describe, and classify two- and three-dimensional shapes (triangle, square, rectangle, cube, right rectangular prism) according to the number and shape of faces and the number of sides and/or vertices. Draw two-dimensional shapes.	SE: 517-522, 523-528, 529-532, 533-536 TE: 517A-522B, 523A-528B, 529A-532B, 533A-536B
2.G. 2	Create squares, rectangles, triangles, cubes, and right rectangular prisms using appropriate materials.	SE: 517-522, 523-528, 529-532, 533-536 TE: 517A-522B, 523A-528B, 529A-532B, 533A-536B INsuccess: 73A, 73-78
2.G. 3	Investigate and predict the result of composing and decomposing two- and three-dimensional shapes.	INsuccess: 61A, 61-66, 67A, 67-72,79A, 79-84, 85A, 85-90
2.G. 4	Partition a rectangle into rows and columns of same-size (unit) squares and count to find the total number of same-size squares.	SE: 541-544 TE: 541A-544B

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 2

Standard	Descriptor	Citations
2.G. 5	Partition circles and rectangles into two, three, or four equal parts; describe the shares using the words halves, thirds, half of, a third of, etc.; and describe the whole as two halves, three thirds, four fourths. Recognize that equal parts of identical wholes need not have the same shape.	SE: 545-550, 551-554, 555-560, 561-564 TE: 545A-550B, 551A-554B, 555A-560B, 561A-564B
MEASUREMENT		
2.M. 1	Describe the relationships among inch, foot, and yard. Describe the relationship between centimeter and meter.	SE: 429-432, 449-452, 471-474, 479-482, 483-486 TE: 429A-432B, 449A-452B, 471A-474B, 479A-482B, 483A-486B INsuccess: 43A, 43-48
2.M. 2	Estimate and measure the length of an object by selecting and using appropriate tools, such as rulers, yardsticks, meter sticks, and measuring tapes to the nearest inch, foot, yard, centimeter and meter.	$\begin{array}{ll}\text { SE: } & 429-432,439-442,449-452,457-462,463-466,471- \\ & 474,475-478,479-482,483-486,507-510 \\ \text { TE: } & 429 \mathrm{~A}-432 \mathrm{~B}, 439 \mathrm{~A}-442 \mathrm{~B}, 449 \mathrm{~A}-452 \mathrm{~B}, 457 \mathrm{~A}-462 \mathrm{~B}, \\ & 463 \mathrm{~A}-466 \mathrm{~B}, 471 \mathrm{~A}-474 \mathrm{~B}, 475 \mathrm{~A}-478 \mathrm{~B}, 479 \mathrm{~A}-482 \mathrm{~B}, \\ & 483 \mathrm{~A}-486 \mathrm{~B}, 507 \mathrm{~A}-510 \mathrm{~B} \\ \text { INsuccess: } \quad 49 \mathrm{~A}, 49-54\end{array}$
2.M. 3	Understand that the length of an object does not change regardless of the units used. Measure the length of an object twice using length units of different lengths for the two measurements. Describe how the two measurements relate to the size of the unit chosen.	SE: 449-452, 453-456, 483-486 TE: 449A-452B, 453A-456B, 483A-486B
2.M. 4	Estimate and measure volume (capacity) using cups and pints.	INsuccess: 55A, 55-60 This standard is additionally covered in Grade 3, see pages: SE: 439-442 TE: 439A-439D, 439-442

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 2

Standard	Descriptor	Citations
2.M. 5	Tell and write time to the nearest five minutes from analog clocks, using a.m. and p.m. Solve real-world problems involving addition and subtraction of time intervals on the hour or half hour.	SE: 207-210, 211-216, 217-220, 221-224 TE: 207A-210B, 211A-216B, 217A-220B, 221A-224B INsuccess: 31A, 31-36
2.M. 6	Describe relationships of time, including: seconds in a minute; minutes in an hour; hours in a day; days in a week; and days, weeks, and months in a year.	INsuccess: 37A, 37-42
2.M. 7	Find the value of a collection of pennies, nickels, dimes, quarters and dollars.	$\begin{array}{ll} \hline \text { SE: } & 165-168,169-174,175-178,179-184,189-192,193- \\ & 196,197-202 \\ \text { TE: } & 165 \mathrm{~A}-168 \mathrm{~B}, 169 \mathrm{~A}-174 \mathrm{~B}, 175 \mathrm{~A}-178 \mathrm{~B}, 179 \mathrm{~A}-184 \mathrm{~B}, \\ & 189 \mathrm{~A}-192 \mathrm{~B}, 193 \mathrm{~A}-196 \mathrm{~B}, 197 \mathrm{~A}-202 \mathrm{~B} \end{array}$
DATA ANALYSIS		
2.DA. 1	Draw a picture graph (with single-unit scale) and a bar graph (with single-unit scale) to represent a data set with up to four choices (What is your favorite color? red, blue, yellow, green). Solve simple put-together, take-apart, and compare problems using information presented in the graphs.	SE: 65-68, 69-72, 73-76, 77-80, 81-84 TE: 65A-68B, 69A-72B, 73A-76B, 77A-80B, 81A-84B

Houghton Mifflin Harcourt

Into Math, Grade 3 ©2020

correlated to the

Indiana Academic Standards: Mathematics (2020)

Grade 3

Standard	Descriptor	Citations
PROCESS STANDARDS FOR MATHEMATICS		
PS. 1	Make sense of problems and persevere in solving them.	Representative Pages: SE: $8,24,30,38,54,65,94,100,112,122,146,154,183,189$, 196, 220, 224, 229, 234, 248, 260, 278, 282, 298, 310, 342, $364,376,392,404,412,432,451,460,472,498,502,518$, 522 TE: 8, 24, 30, 38, 54, 65, 94, 100, 112, 122, 146, 154, 183, 189, 196, 220, 224, 229, 234, 248, 260, 278, 282, 298, 310, 342, $364,376,392,404,412,432,451,460,472,498,502,518$, 522 INsuccess: 19, 25, 37, 49, 55, 79
PS. 2	Reason abstractly and quantitatively.	Representative Pages: SE: $22,38,50,68-70,85,94,105,119,142,161,178,190,196$, 206, 226, 244, 252, 260, 278, 291-292, 310, 322, 330, 342, 360, 372, 408, 416, 424, 441, 452, 464, 494, 506, 514 TE: 22, 38, 50, 68-70, 85, 94, 105, 119, 142, 161, 178, 190, 196, 206, 226, 244, 252, 260, 278, 291-292, 310, 322, 330, 342, 360, 372, 408, 416, 424, 441, 452, 464, 494, 506, 514 INsuccess: 7, 13, 25, 37, 61, 67, 73

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 3

Standard	Descriptor	Citations
PS. 3	Construct viable arguments and critique the reasoning of others.	Representative Pages: SE: 29, 40, 42, 110, 121, 126, 130, 142, 174, 188, 244, 254, 256, 262, 264, 272, 277, 287, 291, 296, 314, 317, 355, 380, 388, 391, 396, 407-408, 411, 422, 476, 502, 512, 518 TE: 29, 40, 42, 110, 121, 126, 130, 142, 174, 188, 244, 254, 256, 262, 264, 272, 277, 287, 291, 296, 314, 317, 355, 380, 388, 391, 396, 407-408, 411, 422, 476, 502, 512, 518 INsuccess: 31
PS. 4	Model with mathematics.	Representative Pages: SE: 12, 14-16, 24, 30, 71, 86, 94, 154, 158, 166, 178, 182, 195, 205, 219, 223-224, 230, 233, 277, 285, 296-298, 305, 312, 344, 450-452, 459, 467-468 TE: $12,14-16,24,30,71,86,94,154,158,166,178,182,195$, 205, 219, 223-224, 230, 233, 277, 285, 296-298, 305, 312, 344, 450-452, 459, 467-468 INsuccess: 7, 31, 43, 49, 61
PS. 5	Use appropriate tools strategically.	Representative Pages: SE: 6-8, 20, 30, 63, 78, 112, 124, 132, 156, 162, 180, 202, 217, $248,304,306,308,330,334,341,346,366-368,372,403$, 423-424, 440, 442, 446, 452 TE: $6-8,20,30,63,78,112,124,132,156,162,180,202,217$, $248,304,306,308,330,334,341,346,366-368,372,403$, 423-424, 440, 442, 446, 452 INsuccess: 43, 55, 79

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 3

Standard	Descriptor	Citations
PS. 6	Attend to precision.	Representative Pages: SE: 12, 16, 41-42, 46, 54, 146, 150, 183, 190, 272, 277-278, 281-282, 287, 291, 309, 314, 315, 318, 330, 338, 345, 379, 392, 404, 406, 410, 414, 428, 457, 463-464, 470, 500, 513, 521 TE: 12, 16, 41-42, 46, 54, 146, 150, 183, 190, 272, 277-278, 281-282, 287, 291, 309, 314, 315, 318, 330, 338, 345, 379, 392, 404, 406, 410, 414, 428, 457, 463-464, 470, 500, 513, 521 INsuccess: 67, 73, 85, 91
PS. 7	Look for and make use of structure.	
PS. 8	Look for and express regularity in repeated reasoning.	$\begin{array}{ll} \text { Representative Pages: } \\ \text { SE: } & 45-46,65,71,111,120,122,129,153,182-184,188-189, \\ & 194-195,200-201,205-206,213,246,255,259,263,274, \\ & 316-317,363-364,371,376,387,497 \\ \text { TE: } & 45-46,65,71,111,120,122,129,153,182-184,188-189, \\ & 194-195,200-201,205-206,213,246,255,259,263,274, \\ & 316-317,363-364,371,376,387,497 \end{array}$
NUMBER SENSE		
3.NS. 1	Read and write whole numbers up to 10,000. Use words, models, standard form and expanded form to represent and show equivalent forms of whole numbers up to 10,000 .	SE: 268, 269-272, 299-300 TE: 268, 269A-269D, 269-272, 272A-272B, 299-300 INsuccess: 1A, 1-6, 7A, 7-12, 13A, 13-18

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 3

Standard	Descriptor	Citations
3.NS. 2	Compare two whole numbers up to 10,000 using $>$, $=$, and < symbols.	SE: 400, 438 TE: 400, 438 INsuccess: 19A, 19-24
3.NS. 3	Understand a fraction, $1 / b$, as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction, a / b, as the quantity formed by a parts of size $1 / b$. [In grade 3, limit denominators of fractions to 2, 3, 4, 6, 8.]	$\begin{aligned} \text { SE: } & 352,353-356,357-360,361-364,373-376,381-382,384, \\ & 400,419 \\ \text { TE: } & 352,353 A-353 D, 353-356,356 A-356 B, 357 A-357 D, 357- \\ & 360,360 A-360 B, 361 A-361 D, 361-364,364 A-364 B, \\ & 373 A-373 D, 373-376,376 A-376 B, 381-382,384,400,419\end{aligned}$
3.NS. 4	Represent a fraction, $1 / b$, on a number line by defining the interval from 0 to 1 as the whole, and partitioning it into b equal parts. Recognize that each part has size $1 / b$ and that the endpoint of the part based at 0 locates the number $1 / b$ on the number line.	SE: 365-368, 381-382 TE: 365A-365D, 365-368, 368A-368B, 381-382
3.NS. 5	Represent a fraction, a / b, on a number line by marking off lengths $1 / b$ from 0 . Recognize that the resulting interval has size a / b, and that its endpoint locates the number a / b on the number line.	```SE: 365-368, 373-376, 381-382 TE: 365A-365D, 365-368, 368A-368B, 373A-373D, 373-376, 376A-376B, 381-382```
3.NS. 6	Understand two fractions as equivalent (equal) if they are the same size, based on the same whole or the same point on a number line.	SE: $369-372,381-382,421-424,425-428,429-432,433-434$ TE: $369 \mathrm{~A}-369 \mathrm{D}, 369-372,372 \mathrm{~A}-372 \mathrm{~B}, 381-382,421 \mathrm{~A}-421 \mathrm{D}$, $421-424,424 \mathrm{~A}-424 \mathrm{~B}, 425 \mathrm{~A}-425 \mathrm{D}, 425-428,428 \mathrm{~A}-428 \mathrm{~B}$, $429 \mathrm{~A}-429 \mathrm{D}, 429-432,432 \mathrm{~A}-432 \mathrm{~B}, 433-434$
3.NS. 7	Recognize and generate simple equivalent fractions (e.g., 1/2 $=2 / 4,4 / 6=2 / 3$). Explain why the fractions are equivalent (e.g., by using a visual fraction model).	SE: 369-372, 381-382, 401-404, 417-418, 421-424, 425-428, 433-434 TE: 369A-369D, 369-372, 372A-372B, 381-382, 401A-401D, 401-404, 404A-404B, 417-418, 421A-421D, 421-424, 424A-424B, 425A-425D, 425-428, 428A-428B, 433-434

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 3

Standard	Descriptor	Citations
3.NS. 8	Compare two fractions with the same numerator or the same denominator by reasoning about their size based on the same whole. Record the results of comparisons with the symbols $>$, =, or <, and justify the conclusions (e.g., by using a visual fraction model).	SE: 401-404, 405-408, 409-412, 413-416, 417-418 TE: 401A-401D, 401-404, 404A-404B, 405A-405B, 405-408, 408A-408B, 409A-409D, 409-412, 412A-412B, 413A413D, 417-418
3.NS. 9	Use place value understanding to round 2- and 3-digit whole numbers to the nearest 10 or 100 .	```SE: 257-260, 261-264, 265-266 TE: 257A-257D, 257-260, 260A-260B, 261A-261D, 261-264, 264A-264B, 265-266```
COMPUTATION		
3.C. 1	Fluently add and subtract whole numbers within 1000 using strategies and algorithms based on place value, properties of operations, and relationships between addition and subtraction.	SE: 249-252, 269-272, 273-278, 279-282, 283-288 TE: 249A-252, 269A-272, 273A-278, 279A-282, 283A-288
3.C. 2	Represent the concept of multiplication of whole numbers with the following models: equal-sized groups, arrays, area models, and equal "jumps" on a number line. Understand the properties of 0 and 1 in multiplication.	SE: $3,4,5-8,9-12,17-20,31-32,33,34,43-46,55-56,60,82$, 83-86, 91-94, 95-98, 99-102, 103-106, 113-114, 127-130, 135-136, 137, 138, 209, 210, 221-224, 225-230, 235-236 TE: 3, 4, 5A-5D, 5-8, 8A-8B, 9A-9D, 9-12, 12A-12B, 17A17D, 17-20, 20A-20B, 31-32, 33, 34, 43A-43D, 43-46, 46A-46B, 55-56, 60, 82, 83A-83D, 83-86, 86A-86B, 91A91D, 91-94, 94A-94B, 95A-95D, 95-98, 98A-98B, 99A99D, 99-102, 102A-102B, 103A-103D, 103-106, 106A106B, 113-114, 127A-127D, 127-130, 130A-130B, 135136, 137, 138, 209, 210, 221A-221D, 221-224, 224A-224B, 225A-225D, 225-230, 230A-230B, 235-236
3.C. 3	Represent the concept of division of whole numbers with the following models: partitioning, sharing, and an inverse of multiplication. Understand the properties of 0 and 1 in division.	$\begin{aligned} \text { SE: } & 139-142,143-146,147-150,163-166,167-168,170,171- \\ & 174,207-208 \\ \text { TE: } & 139 \mathrm{~A}-139 \mathrm{D}, 139-142,142 \mathrm{~A}-142 \mathrm{~B}, 143 \mathrm{~A}-143 \mathrm{D}, 143-146, \\ & 146 \mathrm{~A}-146 \mathrm{~B}, 147 \mathrm{~A}-147 \mathrm{D}, 147-150,150 \mathrm{~A}-150 \mathrm{~B}, 163 \mathrm{~A}- \\ & 163 \mathrm{D}, 163-166,166 \mathrm{~A}-166 \mathrm{~B}, 167-168,170,171 \mathrm{~A}-171 \mathrm{D}, \\ & 171-174,174 \mathrm{~A}-174 \mathrm{~B}, 207-208 \end{aligned}$

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 3

Standard	Descriptor	Citations
3.CA. 4	Interpret whole-number quotients of whole numbers (e.g., interpret $56 \div 8$ as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each).	```SE: 143-146, 147-150, 159-162, 167-168 TE: 143A-143D, 143-146, 146A-146B, 147A-147D, 147-150, 150A-150B, 159A-159D, 159-162, 162A-162B, 167-168```
3.C. 5	Multiply and divide within 100 using strategies, such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=40$, one knows $40 \div 5=8$), or properties of operations.	SE: $117-122,123-126,127-130,131-134,135-136,197-202$, $207-208$ TE: $117 \mathrm{~A}-117 \mathrm{D}, 117-122,122 \mathrm{~A}-122 \mathrm{~B}, 123 \mathrm{~A}-123 \mathrm{D}, 123-126$, $126 \mathrm{~A}-126 \mathrm{~B}, 127 \mathrm{~A}-127 \mathrm{D}, 127-130,130 \mathrm{~A}-130 \mathrm{~B}, 131 \mathrm{~A}-$ $131 \mathrm{D}, 131-134,134 \mathrm{~A}-134 \mathrm{~B}, 135-136,197 \mathrm{~A}-197 \mathrm{D}, 197-$ $202,202 \mathrm{~A}-202 \mathrm{~B}, 207-208$
3.C. 6	Demonstrate fluency with mastery of multiplication facts and corresponding division facts of 0 to 10 .	SE: 95-98, 99-102, 103-106, 113-114, 116, 138, 175-178, 179-184,185-190, 191-196, 203-206, 207-208, 210 TE: 95A-95D, 95-98, 98A-98B, 99A-99D, 99-102, 102A102B, 103A-103D, 103-106, 106A-106B, 113-114, 116, 138, 175A-175D, 175-178, 178A-178B, 179A-179D, 179184, 184A-184B, 185A-185D, 185-190, 190A-190B, 191A-191D, 191-196, 196A-196B, 203A-203D, 203-206, 206A-206B, 207-208, 210
ALGEBRAIC THINKING		
3.AT. 1	Solve real-world problems involving addition and subtraction of whole numbers within 1000 (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).	```SE: 221-224, 225-230, 231-234, 293-298 TE: 221A-221D, 221-224, 225A-225D, 225-230, 231A-231D, 231-234, 293A-293D, 293-298```

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 3

Standard	Descriptor	Citations
3.AT. 2	Solve real-world problems involving whole number multiplication and division within 100 in situations involving equal groups, arrays, and measurement quantities (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).	SE: 13-16, 21-24, 25-30, 31-32, 61-66, 67-72, 73-78, 79-80, 115, 131-134, 135-136, 139-142, 151-154, 155-158, 167168, 179-184, 185-190, 191-196, 207-208, 231-234, 235236 TE: $13 \mathrm{~A}-13 \mathrm{D}, 13-16,16 \mathrm{~A}-16 \mathrm{~B}, 21 \mathrm{~A}-21 \mathrm{D}, 21-24,24 \mathrm{~A}-24 \mathrm{~B}$, 25A-25D, 25-30, 30A-30B, 31-32, 61A-61D, 61-66, 66A66B, 67A-67D, 67-72, 72A-72B, 73A-73D, 73-78, 78A78B, 79-80, 115, 131A-131D, 131-134, 134A-134B, 135136, 139A-139D, 139-142, 142A-142B, 151A-151D, 151154, 154A-154B, 155A-155D, 155-158, 158A-158B, 167168, 179A-179D, 179-184, 184A-184B, 185A-185D, 185190, 190A-190B, 191A-191D, 191-196, 196A-196B, 207208, 231A-231D, 231-234, 234A-234B, 235-236
3.AT. 3	Solve two-step real-world problems using the four operations of addition, subtraction, multiplication and division (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).	SE: 225-230, 231-234, 235-236, 253-256, 265-266, 293-298, 299-300, 457-460, 485-486 TE: 225A-225D, 225-230, 230A-230B, 231A-231D, 231-234, 234A-234B, 235-236, 253A-253D, 253-256, 256A-256B, 265-266, 293A-293D, 293-298, 298A-298B, 299-300, 457A-457D, 457-460, 460A-460B, 485-486 INsuccess: 43A, 43-48
3.AT. 4	Interpret a multiplication equation as equal groups (e.g., interpret 5×7 as the total number of objects in 5 groups of 7 objects each). Represent verbal statements of equal groups as multiplication equations.	SE: 5-8, 9-12, 31-32 TE: $5 \mathrm{~A}-5 \mathrm{D}, 5-8,8 \mathrm{~A}-8 \mathrm{~B}, 9 \mathrm{~A}-9 \mathrm{D}, 9-12,12 \mathrm{~A}-12 \mathrm{~B}, 31-32$
3.AT. 5	Determine the unknown whole number in a multiplication or division equation relating three whole numbers.	```SE: 197-202, 207-208, 215-218, 221-224, 235-236 TE: 197A-197D, 197-202, 202A-202B, 207-208, 215A-215D, 215-218, 218A-218B, 221A-221D, 221-224, 224A-224B, 235-236```

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 3

| Standard | Descriptor | Citations |
| :--- | :--- | :--- | :--- |
| 3.AT.6 | Create, extend, and give an appropriate rule for number
 patterns within 100 (including patterns in the addition table
 or multiplication table). | SE: 107-112, 211-214, 241-244
 TE: 107A-112, 211A-214, 241A-244 |
| GEOMETRY | INsuccess: 37A, 37-42 | |

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 3

Standard	Descriptor	Citations
MEASUREMENT		
3.M. 1	Estimate and measure the mass of objects in grams (g) and kilograms (kg) and the volume of objects in quarts (qt), gallons (gal), and liters (l). Add, subtract, multiply, or divide to solve one-step real-world problems involving masses or volumes that are given in the same units (e.g., by using drawings, such as a beaker with a measurement scale, to represent the problem).	SE: 438, 439-442, 443-446, 447-452, 453-454 TE: 438, 439A-439D, 439-442, 442A-442B, 443A-443D, 443- 446, 446A-446B, 447A-447D, 447-452, 452A-452B, 453454 INsuccess: 61A, 61-66
3.M. 2	Choose and use appropriate units and tools to estimate and measure length, weight, and temperature. Estimate and measure length to a quarter-inch, weight in pounds, and temperature in degrees Celsius and Fahrenheit.	INsuccess: 67A, 67-72, 73A, 73-78, 79A, 79-84
3.M. 3	Tell and write time to the nearest minute from analog clocks, using a.m. and p.m., and measure time intervals in minutes. Solve real-world problems involving addition and subtraction of time intervals in minutes.	$\begin{aligned} \text { SE: } & 325,326,327-330,331-334,335-338,339-342,343-346, \\ & 347-348 \\ \text { TE: } & 325,326,327 \mathrm{~A}-327 \mathrm{D}, 327-330,330 \mathrm{~A}-330 \mathrm{~B}, 331 \mathrm{~A}-331 \mathrm{D}, \\ & 331-334,334 \mathrm{~A}-334 \mathrm{~B}, 335 \mathrm{~A}-335 \mathrm{D}, 335-338,338 \mathrm{~A}-338 \mathrm{~B}, \\ & 339 \mathrm{~A}-339 \mathrm{D}, 339-342,342 \mathrm{~A}-342 \mathrm{~B}, 343 \mathrm{~A}-343 \mathrm{D}, 343-346, \\ & 346 \mathrm{~A}-346 \mathrm{~B}, 347-348\end{aligned}$
3.M. 4	Find the value of any collection of coins and bills. Write amounts less than a dollar using the Φ symbol and write larger amounts using the $\$$ symbol in the form of dollars and cents (e.g., \$4.59). Solve real-world problems to determine whether there is enough money to make a purchase.	INsuccess: 49A, 49-54, 55A, 55-60
3.M. 5	Find the area of a rectangle with whole-number side lengths by modeling with unit squares, and show that the area is the same as would be found by multiplying the side lengths. Identify and draw rectangles with the same perimeter and different areas or with the same area and different perimeters.	SE: 35-38, 39-42, 43-46, 55-56, 117-122, 315-318, 319-322, 323-324 TE: 35A-35D, 35-38, 38A-38B, 39A-39D, 39-42, 42A-42B, 43A-43D, 43-46, 46A-46B, 55-56, 117A-117B, 117-122, 122A-122B, 315A-315D, 315-318, 318A-318B, 319A319D, 319-322, 322A-322B, 323-324

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 3

Standard	Descriptor	Citations
3.M. 6	Multiply side lengths to find areas of rectangles with wholenumber side lengths to solve real-world problems and other mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning.	SE: 47-50, 55-56 TE: 47A-47D, 47-50, 50A-50B, 55-56
3.M. 7	Find perimeters of polygons given the side lengths or given an unknown side length.	```SE: 303-306, 307-310, 311-314, 323-324 TE: 303A-303D, 303-306, 306A-306B, 307A-307D, 307-310, 310A-310B, 311A-311D, 311-314, 314A-314B, 323-324```
DATA ANALYSIS		
3.DA. 1	Create scaled picture graphs, scaled bar graphs, and frequency tables to represent a data set-including data collected through observations, surveys, and experimentswith several categories. Solve one- and two-step "how many more" and "how many less" problems regarding the data and make predictions based on the data.	SE: 456, 457-460, 461-464, 465-468, 469-472, 481-484, 485486 TE: $456,457 \mathrm{~A}-457 \mathrm{D}, 457-460,460 \mathrm{~A}-460 \mathrm{~B}, 461 \mathrm{~A}-461 \mathrm{D}, 461-$ 464, 464A-464B, 465A-465D, 465-468, 468A-468B, 469A-469D, 469-472, 472A-472B, 481A-481D, 481-484, 484A-484B, 485-486 INsuccess: 25A, 25-30, 31A, 31-36
3.DA. 2	Generate measurement data by measuring lengths with rulers to the nearest quarter of an inch. Display the data by making a line plot, where the horizontal scale is marked off in appropriate units, such as whole numbers, halves, or quarters.	```SE: 377-380, 381-382, 473-476, 477-480, 485-486 TE: 377A-377D, 377-380, 380A-380B, 381-382, 473A-473D, 473-476, 476A-476B, 477A-477D, 477-480, 480A-480B, 485-486```

Houghton Mifflin Harcourt

Into Math, Grade 4 ©2020
correlated to the

Indiana Academic Standards: Mathematics (2020)
 Grade 4

Standard	Descriptor	Citations
PROCESS STANDARDS FOR MATHEMATICS		
PS. 1	Make sense of problems and persevere in solving them.	Representative Pages: SE: 9, 14, 22, 34, 346, 56, 60, 68, 72, 80, 107, 112, 124, 136, $144,156,164,174,194,210,230,250,310,322,338,342$, 366, 378, 394, 408, 415, 433, 460, 482, 522 TE: 9, 14, 22, 34, 346, 56, 60, 68, 72, 80, 107, 112, 124, 136, $144,156,164,174,194,210,230,250,310,322,338,342$, 366, 378, 394, 408, 415, 433, 460, 482, 522 INsuccess: 1, 73
PS. 2	Reason abstractly and quantitatively.	Representative Pages: SE: 20, 33, 60, 67-68, 78, 90, 93, 104, 110-112, 122-124, 134, 146, 162, 177, 194, 205, 229, 258, 270, 289, 318, 337-338, 384, 386, 402, 428, 459, 490, 520, 542 TE: $20,33,60,67-68,78,90,93,104,110-112,122-124,134$, 146, 162, 177, 194, 205, 229, 258, 270, 289, 318, 337-338, 384, 386, 402, 428, 459, 490, 520, 542 INsuccess: 19, 61

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 4

Standard	Descriptor	Citations
PS. 3	Construct viable arguments and critique the reasoning of others.	Representative Pages: SE: $34,56,64,88,92,170,174,178,193,206,210,244,254$, 257-258, 262, 285-286, 289, 294, 309-310, 319, 322, 356, 370, 385, 404, 437, 456, 459-460, 475, 492, 529-530, 540 TE: $34,56,64,88,92,170,174,178,193,206,210,244,254$, 257-258, 262, 285-286, 289, 294, 309-310, 319, 322, 356, 370, 385, 404, 437, 456, 459-460, 475, 492, 529-530, 540 INsuccess: 43
PS. 4	Model with mathematics.	Representative Pages: SE: 41-42, 44, 46, 54-56, 58-60, 61-63, 65, 67, 70-72, 102, 106-107, 135, 152, 176-177, 196, 202, 278, 330, 333, 350, 354, 366, 382, 396, 414, 437, 463, 506, 540 TE: $41-42,44,46,54-56,58-60,61-63,65,67,70-72,102$, 106-107, 135, 152, 176-177, 196, 202, 278, 330, 333, 350, 354, 366, 382, 396, 414, 437, 463, 506, 540 INsuccess: 7, 13, 55, 73, 91, 97
PS. 5	Use appropriate tools strategically.	Representative Pages: SE: 6, 21, 25, 40, 56, 60, 63-64, 71, 86-87, 140, 144, 148, 152, 163-164, 166-167, 227-228, 231, 242-244, 268-269, 281, 300, 341-342, 345-347, 376-378, 401, 424, 447-448, 510, 539 TE: $6,21,25,40,56,60,63-64,71,86-87,140,144,148,152$, 163-164, 166-167, 227-228, 231, 242-244, 268-269, 281, 300, 341-342, 345-347, 376-378, 401, 424, 447-448, 510, 539 INsuccess: 31, 37, 43, 61, 67, 79

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 4

Standard	Descriptor	Citations
PS. 6	Attend to precision.	Representative Pages: SE: $9-10,14,18,45,91,143,151,156,170,173,177-178,214$, 221, 253, 282, 286, 292, 317-318, 321-322, 328-329, 385, 403, 412, 446-447, 454, 479, 498, 507, 521, 546, 550 TE: $9-10,14,18,45,91,143,151,156,170,173,177-178,214$, 221, 253, 282, 286, 292, 317-318, 321-322, 328-329, 385, 403, 412, 446-447, 454, 479, 498, 507, 521, 546, 550 INsuccess: 55, 67, 79, 85
PS. 7	Look for and make use of structure.	Representative Pages: SE: $7-8,12,16,32,36,43,46,63,66,68,79-80,118-119,127$, 136, 148, 168, 186-187, 199, 222, 250, 274, 302, 365, 407, 409, 423-424, 438, 474-475, 504, 522, 538 TE: $7-8,12,16,32,36,43,46,63,66,68,79-80,118-119,127$, $136,148,168,186-187,199,222,250,274,302,365,407$, 409, 423-424, 438, 474-475, 504, 522, 538 INsuccess: 1, 7, 13, 19, 25, 31
PS. 8	Look for and express regularity in repeated reasoning.	```Representative Pages: SE: 13, 17, 37, 46, 83, 155, 202, 209, 249, 252, 254, 256, 260, 280, 282, 287, 291, 304, 312, 315-317, 321, 424, 434, 437, 502,537 TE: 13, 17, 37, 46, 83, 155, 202, 209, 249, 252, 254, 256, 260, 280, 282, 287, 291, 304, 312, 315-317, 321, 424, 434, 437, 502,537```
NUMBER SENSE		
4.NS. 1	Read and write whole numbers up to $1,000,000$. Use words, models, standard form and expanded form to represent and show equivalent forms of whole numbers up to $1,000,000$.	$\begin{array}{ll} \text { SE: } & 4,11-14,19-22,27-28 \\ \text { TE: } & 3 B-3 C, 4,11 A-11 \mathrm{D}, 11-14,14 \mathrm{~A}-14 \mathrm{~B}, 19 \mathrm{~A}-19 \mathrm{D}, 19-22, \\ & 22 \mathrm{~A}-22 \mathrm{~B}, 27-28 \end{array}$

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 4

Standard	Descriptor	Citations
4.NS. 2	Compare two whole numbers up to $1,000,000$ using >, =, and < symbols.	SE: 19-22, 27-28 TE: 19A-19D, 19-22, 22A-22B, 27-28
4.NS. 3	Express whole numbers as fractions and recognize fractions that are equivalent to whole numbers. Name and write mixed numbers using objects or pictures. Name and write mixed numbers as improper fractions using objects or pictures.	SE: 275-278, 420 TE: 275A-275D, 275-278, 278A-278B, 420 INsuccess: 49A, 49-54, 55A, 55-60
4.NS. 4	Explain why a fraction, a / b, is equivalent to a fraction, ($n \times$ $\mathrm{a}) /(\mathrm{n} \times \mathrm{b})$, by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions. [In grade 4, limit denominators of fractions to $2,3,4,5,6,8,10,25,100$.]	$\begin{aligned} & \text { SE: } 265,266,275-278,279-282,283-286,295-296,298,362 \\ & \text { TE: } \text { 265B-265C, 265, 266, 275A-275D, 275-278, 278A-278B, } \\ & \text { 279A-279D, 279-282, 282A-282B, 283A-283D, 283-286, } \\ & \text { 286A-286B, 295-296, 298, 362 } \end{aligned}$
4.NS. 5	Compare two fractions with different numerators and different denominators (e.g., by creating common denominators or numerators, or by comparing to a benchmark, such as $0,1 / 2$, and 1). Recognize comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols $>$, $=$, or $<$, and justify the conclusions (e.g., by using a visual fraction model).	SE: 266, 267-270, 271-274, 287-290, 291-294, 295-296, 298, 326 TE: 265B-265C, 266, 267A-267D, 267-270, 270A-270B, 271A-271D, 271-274, 274A-274B, 287A-287D, 287-290, 290A-290B, 291A-291D, 291-294, 294A-294B, 295-296, 298, 326 INsuccess: 61A, 61-66
4.NS. 6	Write tenths and hundredths in decimal and fraction notations. Use words, models, standard form and expanded form to represent decimal numbers to hundredths. Know the fraction and decimal equivalents for halves and fourths (e.g., $1 / 2=0.5$ $=0.50,7 / 4=13 / 4=1.75$).	SE: 299-302, 303-306, 323-324 TE: 299A-299B, 299-302, 302A-302B, 302A-303D, 303-306, 306A-306B, 323-324 INsuccess: 67A, 67-72

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 4

Standard	Descriptor	Citations
4.NS. 7	Compare two decimals to hundredths by reasoning about their size based on the same whole. Record the results of comparisons with the symbols $>$, $=$, or $<$, and justify the conclusions (e.g., by using a visual model).	SE: 311-314, 323-324 TE: 311A-311D, 311-314, 314A-314B, 323-324
4.NS. 8	Find all factor pairs for a whole number in the range 1-100. Recognize that a whole number is a multiple of each of its factors. Determine whether a given whole number in the range $1-100$ is a multiple of a given one-digit number.	```SE: 241-244, 245-250, 251-254, 263-264 TE: 214A-241D, 241-244, 244A-244B, 245A-245D, 245-250, 250A-250B, 251A-251D, 251-254, 254A-254B, 263-264```
4.NS. 9	Use place value understanding to round multi-digit whole numbers to any given place value.	$\begin{array}{ll} \text { SE: } & 23-26,85-88,189-194 \\ \text { TE: } & 23 A-23 D, 23-26,26 A-26 B, 85 A-85 D, 85-88,88 A-88 B, \\ & 189 A-189 D, 189-194,194 A-194 B \end{array}$
COMPUTATION		
4.C. 1	Add and subtract multi-digit whole numbers fluently using a standard algorithmic approach.	SE: $1,29,30,31-34,35-38,39-42,47-48$ TE: $1,29 B-29 \mathrm{C}, 29,30,31 \mathrm{~A}-31 \mathrm{D}, 31-34,34 \mathrm{~A}-34 \mathrm{~B}, 35 \mathrm{~A}-35 \mathrm{~B}$, $35-38,38 \mathrm{~A}-38 \mathrm{~B}, 39 \mathrm{~A}-39 \mathrm{D}, 39-42,42 \mathrm{~A}-42 \mathrm{~B}, 47-48$
4.C. 2	Multiply a whole number of up to four digits by a one-digit whole number and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Describe the strategy and explain the reasoning.	SE: 75, 76, 77-80, 85-88, 93-96, 97-98, 99, 100, 101-104, 105-108, 109-112, 113-116, 117-120, 121-124, 129-130, 160, 183, 184, 185-188, 195-198, 199-202, 203-206, 207210, 215-216, 514 TE: 75B-75C, 75, 76, 77A-77D, 77-80, 80A-80B, 85A-85D, 85-88, 88A-88B, 93A-93D, 93-96, 96A-96B, 97-98, 99B-99C, 99, 100, 101A-101D, 101-104, 104A-104B, 105A-105D, 105-108, 108A-108B, 109A-109D, 109-112, 112A-112B, 113A-113D, 113-116, 116A-116B, 117A117D, 117-120, 120A-120B, 121A-121D, 121-124, 124A124B, 129-130, 160, 183B-183C, 183, 184, 185A-185D, 185-188, 188A-188B, 195A-195D, 195-198, 198A-198B, 199A-199D, 199-202, 202A-202B, 203A-203D, 203-206, 206A-206B, 207A-207D, 207-210, 210A-210B, 215-216, 514

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 4

Standard	Descriptor	Citations
4.C. 3	Find whole-number quotients and remainders with up to fourdigit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Describe the strategy and explain the reasoning.	SE: 81-84, 89-92, 93-96, 97-98, 131, 132, 133-136, 137-140, 141-144, 145-148, 149-152, 153-156, 157-158, 159, 160, 161-164, 165-170, 171-174, 179-180 TE: 81A-81D, 81-84, 84A-84B, 89A-89D, 89-92, 92A-92B, 93A-93D, 93-96, 96A-96B, 97-98, 131B-131C, 131, 132, 133A-133D, 133-136, 136A-136B, 137A-137D, 137-140, 140A-140B, 141A-141D, 141-144, 144A-144B, 145A145D, 145-148, 148A-148B, 149A-149D, 149-152, 152A152B, 153A-153D, 153-156, 156A-156B, 157-158, 159B159C, 159, 160, 161A-161D, 161-164, 164A-164B, 165A165D, 165-170, 170A-170B, 171A-171D, 171-174, 174A174B, 179-180
4.C. 4	Multiply fluently within 100.	SE: 52, 76, 93-96, 97-98, 100, 184 TE: 52, 76, 93A-93D, 93-96, 96A-96B, 97-98, 100, 184 INsuccess: 1A, 1-6, 7A, 7-12, 13A, 13-18, 19A, 19-24, 25A, 25-30, 31A, 31-36
4.C. 5	Add and subtract fractions with common denominators. Decompose a fraction into a sum of fractions with common denominators. Understand addition and subtraction of fractions as combining and separating parts referring to the same whole.	SE: 363-366, 367-370, 375-378, 379-382, 387-388, 395-398, 417-418 TE: 361B-361C, 363A-363D, 363-366, 366A-366B, 367A367D, 367-370, 370A-370B, 375A-375D, 375-378, 378A378B, 379A-379D, 379-382, 382A-382B, 387-388, 395A395D, 395-398, 398A-398B, 417-418
4.C. 6	Add and subtract mixed numbers with common denominators (e.g. by replacing each mixed number with an equivalent fraction and/or by using properties of operations and the relationship between addition and subtraction).	SE: 371-374, 379-382, 387-388, 391-394, 399-404, 405-408, 409-412, 413-416, 417-418, 420 TE: 371A-371D, 371-374, 374A-374B, 379A-379D, 379-382, 382A-382B, 387-388, 389B-389C, 391A-391D, 391-394, 394A-394B, 399A-399D, 399-404, 404A-404B, 405A405D, 405-408, 408A-408B, 409A-409D, 409-412, 412A412B, 413A-413D, 413-416, 416A-416B, 417-418, 420

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 4

Standard	Descriptor	Citations
4.C. 7	Show how the order in which two numbers are multiplied (commutative property) and how numbers are grouped in multiplication (associative property) will not change the product. Use these properties to show that numbers can by multiplied in any order. Understand and use the distributive property.	SE: 93-96, 97-98, 105-108, 129-130 TE: 93A-93D, 93-96, 96A-96B, 97-98, 105A-105D, 105-108, 108A-108B, 129-130 INsuccess: 25A, 25-30, 37A, 37-42
ALGEBRAIC THINKING		
4.AT. 1	Solve real-world problems involving addition and subtraction of multi-digit whole numbers (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).	SE: 39-42, 43-46 TE: 39A-39D, 39-42, 43A-43D, 43-46 This standard is also covered in Grade 3, see pages: SE: 221-224, 225-230, 231-234, 293-298 TE: 221A-221D, 221-224, 225A-225D, 225-230, 231A-231D, 231-234, 293A-293D, 293-298
4.AT. 2	Recognize and apply the relationships between addition and multiplication, between subtraction and division, and the inverse relationship between multiplication and division to solve real-world and other mathematical problems.	INsuccess: 1A, 1-6, 19A, 19-24
4.AT. 3	Interpret a multiplication equation as a comparison (e.g., interpret $35=5 \times 7$ as a statement that 35 is 5 times as many as 7 , and 7 times as many as 5). Represent verbal statements of multiplicative comparisons as multiplication equations.	SE: 49, 51, 53-56, 73-74 TE: 49, 51B-51C, 51, 53A-53D, 53-56, 56A-56B, 73-74
4.AT. 4	Solve real-world problems with whole numbers involving multiplicative comparison (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem), distinguishing multiplicative comparison from additive comparison. [In grade 4, division problems should not include a remainder.]	$\begin{aligned} \hline \text { SE: } & 49,51,53-56,57-60,61-64,65-68,69-72,73-74 \\ \text { TE: } & 49,51 \mathrm{~B}-51 \mathrm{C}, 51,53 \mathrm{~A}-53 \mathrm{D}, 53-56,56 \mathrm{~A}-56 \mathrm{~B}, 57 \mathrm{~A}-57 \mathrm{D}, \\ & 57-60,60 \mathrm{~A}-60 \mathrm{~B}, 61 \mathrm{~A}-61 \mathrm{D}, 61-64,64 \mathrm{~A}-64 \mathrm{~B}, 65 \mathrm{~A}-65 \mathrm{D}, \\ & 65-68,68 \mathrm{~A}-68 \mathrm{~B}, 69 \mathrm{~A}-69 \mathrm{D}, 69-72,72 \mathrm{~A}-72 \mathrm{~B}, 73-74 \end{aligned}$

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 4

Standard	Descriptor	Citations
4.AT. 5	Solve real-world problems involving addition and subtraction of fractions referring to the same whole and having common denominators (e.g., by using visual fraction models and equations to represent the problem).	$\begin{array}{ll} \hline \text { SE: } & 371-374,387-388,391-394,413-416,417-418,419 \\ \text { TE: } & 371 \mathrm{~A}-371 \mathrm{D}, 371-374,374 \mathrm{~A}-374 \mathrm{~B}, 387-388,391 \mathrm{~A}-391 \mathrm{D}, \\ & 391-394,394 \mathrm{~A}-394 \mathrm{~B}, 413 \mathrm{~A}-413 \mathrm{D}, 413-416,416 \mathrm{~A}-416 \mathrm{~B}, \\ & 417-418,419 \end{array}$
4.AT. 6	Describe a relationship between two variables and use to find a second number when a first number is given. Generate a number pattern that follows a given rule.	INsuccess: 43A, 43-48 This standard is also covered in Grade 5, see pages: SE: 473-476, 477-480, 481-484, 485-488, 489-492
GEOMETRY		
4.G. 1	Identify, describe, and draw parallelograms, rhombuses, and trapezoids using appropriate tools (e.g., ruler, straightedge and technology).	INsuccess: 73A, 73-78 This standard is also covered in Grade 3, see pages: SE: 503-506, 511-514, 515-518, 519-522 TE: 503A-503D, 503-506, 511A-511D, 511-514, 515A-515D, 515-518, 519A-519D, 519-522
4.G. 2	Recognize and draw lines of symmetry in two-dimensional figures. Identify figures that have lines of symmetry.	$\begin{array}{ll} \text { SE: } & 469-472,473-478,483-484 \\ \text { TE: } & 467 \mathrm{~B}-467 \mathrm{C}, 469 \mathrm{~A}-469 \mathrm{D}, 469-472,472 \mathrm{~A}-472 \mathrm{~B}, 473 \mathrm{~A}- \\ & 473 \mathrm{D}, 473-478,478 \mathrm{~A}-478 \mathrm{~B}, 483-484 \end{array}$
4.G. 3	Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint.	SE: $331-334,335-338,339-344,357-358$ TE: $331 \mathrm{~A}-331 \mathrm{D}, 331-334,334 \mathrm{~A}-334 \mathrm{~B}, 335 \mathrm{~A}-335 \mathrm{D}, 335-338$, $338 \mathrm{~A}-338 \mathrm{~B}, 339 \mathrm{~A}-339 \mathrm{D}, 339-344,344 \mathrm{~A}-344 \mathrm{~B}, 357-358$
4.G. 4	Identify, describe, and draw rays, angles (right, acute, obtuse), and perpendicular and parallel lines using appropriate tools (e.g., ruler, straightedge and technology). Identify these in two-dimensional figures.	SE: 327-330, 331-334, 345-348, 357-358, 441, 444, 445-448, 449-452, 453-456, 457-460, 461-464, 465-466, 468, 513 TE: 325B-325C, 327A-327D, 327-330, 330A-330B, 331A331D, 331-334, 334A-334B, 345A-345D, 345-348, 348A348B, 357-358, 441, 444, 445A-445D, 445-448, 448A448B, 449A-449D, 449-452, 452A-452B, 453A-453D, 453-456, 456A-456B, 457A-457D, 457-460, 460A-460B, 461A-461D, 461-464, 464A-464B, 465-466, 468, 513

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 4

Standard	Descriptor	Citations
4.G. 5	Classify triangles and quadrilaterals based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles (right, acute, obtuse).	SE: 325, 443-444, 449-452, 453-456, 457-460, 465-466, 468 TE: 325, 443B-443C, 443-444, 449A-449D, 449-452, 452A452B, 453A-453D, 453-456, 456A-456B, 457A-457D, 457-460, 460A-460D, 465-466, 468
MEASUREMENT		
4.M. 1	Measure length to the nearest quarter-inch, eighth-inch, and millimeter.	INsuccess: 79A, 79-84
4.M. 2	Know relative sizes of measurement units within one system of units, including km, m, cm; kg, g; lb, oz; l, ml; hr, min, sec. Express measurements in a larger unit in terms of a smaller unit within a single system of measurement. Record measurement equivalents in a two-column table.	SE: 181, 485, 489-492, 493-498, 499-502, 503-506, 511-512, 515-518, 519-522, 523-526, 531-532, 535-538, 551-552 TE: 181, 485, 489A-489D, 489-492, 492A-492B, 493A-493D, 493-498, 498A-498B, 499A-499D, 499-502, 502A-502B, 503A-503D, 503-506, 506A-506B, 511-512, 513C-513D, 515A-515D, 515-518, 518A-518B, 519A-519D, 519-522, 522A-522B, 523A-523D, 523-526, 526A-526B, 531-532, 533B-533C, 535A-535D, 535-538, 538A-538B, 551-552
4.M. 3	Use the four operations to solve real-world problems involving distances, intervals of time, volumes, masses of objects, and money. Include addition and subtraction problems involving simple fractions and problems that require expressing measurements given in a larger unit in terms of a smaller unit.	SE: 319-322, 323-324, 485, 507-510, 511-512, 527-530, 531532, 533, 534, 539-542, 543-546, 547-550, 551-552 TE: 319A-319D, 319-322, 322A-322B, 323-324, 485, 507A507D, 507-510, 510A-510B, 511-512, 527A-527D, 527530, 530A-530B, 531-532, 533B-533C, 533, 534, 539A539D, 539-542, 542A-542B, 543A-543D, 543-546, 546A546B, 547A-547D, 547-550, 550A-550B, 551-552
4.M. 4	Apply the area and perimeter formulas for rectangles to solve real-world problems and other mathematical problems. Recognize area as additive and find the area of complex shapes composed of rectangles by decomposing them into non-overlapping rectangles and adding the areas of the nonoverlapping parts; apply this technique to solve real-world problems and other mathematical problems.	SE: 43-46, 47-48, 75, 181, 217, 219-222, 223-226, 227-230, 231-234, 235-236 TE: 43A-43D, 43-46, 46A-46B, 47-48, 75, 181, 217B-217C, 217, 219A-219D, 219-222, 222A-222B, 223A-223D, 223226, 226A-226B, 227A-227D, 227-230, 230A-230B, 231A-231D, 231-234, 234A-234B, 235-236

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 4

Standard	Descriptor	Citations
4.M. 5	Understand that an angle is measured with reference to a circle, with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. Understand an angle that turns through $1 / 360$ of a circle is called a "one-degree angle," and can be used to measure other angles. Understand an angle that turns through n one-degree angles is said to have an angle measure of n degrees.	```SE: 335-338, 339-344, 357-358 TE: 335A-335D, 335-338, 338A-338B, 339A-339D, 339-344, 344A-344B, 357-358```
4.M. 6	Measure angles in whole-number degrees using appropriate tools. Sketch angles of specified measure.	SE: 339-344, 345-348, 357-358, 461-464, 465-466 TE: 339A-339D, 339-344, 344A-344B, 345A-345D, 345-348, 348A-348B, 357-358, 461A-461D, 461-464, 464A-464B, 465-466
DATA ANALYSIS		
4.DA. 1	Formulate questions that can be addressed with data. Use observations, surveys, and experiments to collect, represent, and interpret the data using tables (including frequency tables), line plots, and bar graphs.	INsuccess: 85A, 85-90, 91A, 91-96 This standard is also covered in Grade 3, see pages: SE: 457-460, 461-464, 465-468, 469-472, 473-476, 477-480, 481-484 TE: $457 \mathrm{~A}-457 \mathrm{D}, 457-460,461 \mathrm{~A}-461 \mathrm{D}, 461-464,465 \mathrm{~A}-465 \mathrm{D}$, 465-468, 469A-469D, 469-472, 473A-473D, 473-476, 477A-477D, 477-480, 481A-481D, 481-484
4.DA. 2	Make a line plot to display a data set of measurements in fractions of a unit ($1 / 2,1 / 4,1 / 8$). Solve problems involving addition and subtraction of fractions by using data displayed in line plots.	SE: 507-510, 511-512 TE: 507A-507D, 507-510, 510A-510B, 511-512
4.DA. 3	Interpret data displayed in a circle graph.	INsuccess: 97A, 97-102

Houghton Mifflin Harcourt

Into Math, Grade 5 ©2020

correlated to the

Indiana Academic Standards: Mathematics (2020)

Grade 5

Standard	Descriptor	Citations
PROCESS STANDARDS FOR MATHEMATICS		
PS. 1	Make sense of problems and persevere in solving them.	Representative Pages: SE: $16,20,42,50,58,62,78,90,112,120,144,152,166,184$, 198, 208, 220, 228, 232, 252, 262, 274, 304, 334, 346, 378, 388, 404, 428, 442, 446, 462, 480, 504 TE: $16,20,42,50,58,62,78,90,112,120,144,152,166,184$, 198, 208, 220, 228, 232, 252, 262, 274, 304, 334, 346, 378, 388, 404, 428, 442, 446, 462, 480, 504 INsuccess: 37, 39, 49, 85
PS. 2	Reason abstractly and quantitatively.	Representative Pages: SE: 7, 20, 24, 25-26, 55, 60-61, 76-78, 89, 98, 106, 116, 132, $144,164,194,211,222,242,277,281,300,322,333,353$, 382, 388, 406, 412, 455, 462, 480, 512 TE: 7, 20, 24, 25-26, 55, 60-61, 76-78, 89, 98, 106, 116, 132, 144, 164, 194, 211, 222, 242, 277, 281, 300, 322, 333, 353, 382, 388, 406, 412, 455, 462, 480, 512 INsuccess: 15, 55, 67, 73, 128

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 5

Standard	Descriptor	Citations
PS. 3	Construct viable arguments and critique the reasoning of others.	Representative Pages: SE: 18, 20, 28, 44-46, 62, 66, 80-82, 90, 155, 165-166, 207208, 212, 270, 274, 290, 299, 346, 350, 357, 361, 391, 412, 449, 504 TE: 18, 20, 28, 44-46, 62, 66, 80-82, 90, 155, 165-166, 207208, 212, 270, 274, 290, 299, 346, 350, 357, 361, 391, 412, 449, 504 INsuccess: 28, 34, 64, 112
PS. 4	Model with mathematics.	Representative Pages: SE: 8, 27, 34-36, 41-42, 67-70, 78, 86, 113, 121, 132, 159- 160, 166, 173-174, 198, 212, 224, 231-232, 242, 256, 273, 285, 354, 378, 388, 404, 432, 446, 450, 466 TE: 8, 27, 34-36, 41-42, 67-70, 78, 86, 113, 121, 132, 159- 160, 166, 173-174, 198, 212, 224, 231-232, 242, 256, 273, 285, 354, 378, 388, 404, 432, 446, 450, 466 INsuccess: 19, 25, 32, 61, 76
PS. 5	Use appropriate tools strategically.	Representative Pages: SE: 8, 38-40, 42, 96-97, 100-101, 130-132, 140, 152, 182- 184, 190, 203-204, 246, 261, 270, 277, 311, 342, 350, 376, 386, 402, 428, 441-442, 476, 500 TE: 8, 38-40, 42, 96-97, 100-101, 130-132, 140, 152, 182- 184, 190, 203-204, 246, 261, 270, 277, 311, 342, 350, 376, 386, 402, 428, 441-442, 476, 500 INsuccess: 79, 86, 109

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 5

Standard	Descriptor	Citations
PS. 6	Attend to precision.	Representative Pages: SE: 10, 12, 21-22, 36, 61, 66, 102, 104-105, 116-120, 159- 160, 189, 203, 227, 251, 261, 278, 330, 354, 374, 386, 403, 412, 436, 445, 450, 458, 461, 499, 508 TE: $10,12,21-22,36,61,66,102,104-105,116-120,159-$ 160, 189, 203, 227, 251, 261, 278, 330, 354, 374, 386, 403, 412, 436, 445, 450, 458, 461, 499, 508 INsuccess: 13, 44, 67
PS. 7	Look for and make use of structure.	$\begin{aligned} & \text { Representative Pages: } \\ & \text { SE: } \quad 6,13,63,69,102,106,109,112,115,117,136,151,156, \\ & \\ & \quad 170,173,189-190,204,211-212,224,246,282,326,362, \\ & \\ & \quad 372,392,423,458,466,476,492,500,508 \\ & \text { TE: } \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & 370,13,173,33,69,102,106,109,112,115,117,136,151,156, \\ & \hline \end{aligned}$ INsuccess: 14, 122
PS. 8	Look for and express regularity in repeated reasoning.	Representative Pages: SE: $11-12,16,48-50,56-58,70,108,110,184,228,262,370$, 421 TE: $11-12,16,48-50,56-58,70,108,110,184,228,262,370$, 421 INsuccess: 32, 91, 121
NUMBER SENSE		
5.NS. 1	Use a number line to compare and order fractions, mixed numbers, and decimals to thousandths. Write the results using $>$, $=$, and $<$ symbols.	SE: 331-334, 335-336 TE: 331A-331D, 331-334, 334A-334B, 335-336 INsuccess: 13A, 13-18, 19A, 19-24, 37A, 37-42

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 5

Standard	Descriptor	Citations
5.NS. 2	Explain different interpretations of fractions, including: as parts of a whole, parts of a set, and division of whole numbers by whole numbers.	INsuccess: 31A, 31-36, 43A, 43-48
5.NS. 3	Recognize the relationship that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right, and inversely, a digit in one place represents $1 / 10$ of what it represents in the place to its left.	```SE: 5-8, 29-30, 319-322, 335-336 TE: 5A-5D, 5-8, 8A-8B, 29-30, 319A-319D, 319-322, 322A-322B, 335-336```
5.NS. 4	Explain patterns in the number of zeros of the product when multiplying a number by powers of 10 , and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10 . Use whole-number exponents to denote powers of 10 .	SE: $9-12,13-16,29-30,369-374,397-398,419-424,451-$ 452 TE: 9A-9D, 9-12, 12A-12B, 13A-13D, 13-16, 16A-16B, 2930, 369A-369D, 369-374, 374A-374B, 397-398, 419A419D, 419-424, 424A-424B, 451-452
5.NS. 5	Use place value understanding to round decimal numbers up to thousandths to any given place value.	SE: 327-330, 335-336 TE: 327A-327D, 327-330, 330A-330B, 335-336
5.NS. 6	Understand, interpret, and model percents as part of a hundred (e.g. by using pictures, diagrams, and other visual models).	INsuccess: 25A, 25-30 This standard is additionally taught in Grade 6 , see pages:
COMPUTATION		
5.C. 1	Multiply multi-digit whole numbers fluently using a standard algorithmic approach.	$\begin{array}{ll} \text { SE: } & 17-20,21-24,25-28,29-30,54,368,400 \\ \text { TE: } & 17 \mathrm{~A}-17 \mathrm{D}, 17-20,20 \mathrm{~A}-20 \mathrm{~B}, 21 \mathrm{~A}-21 \mathrm{D}, 21-24,24 \mathrm{~A}-24 \mathrm{~B}, \\ & 25 \mathrm{~A}-25 \mathrm{D}, 25-28,28 \mathrm{~A}-28 \mathrm{~B}, 29-30,54,368,400 \end{array}$

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 5

Standard	Descriptor	Citations
5.C. 2	Find whole-number quotients and remainders with up to fourdigit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Describe the strategy and explain the reasoning used.	$\begin{aligned} \text { SE: } & 33-36,37-42,43-46,47-50,51-52,55-58,59-62,63-66, \\ & 67-70,71-72,74,418 \\ \text { TE: } & 33 A-33 D, 33-36,36 A-36 B, 37 A-37 D, 37-42,42 A-42 B, \\ & 43 A-43 D, 43-46,46 A-46 B, 47 A-47 D, 47-50,50 A-50 B \\ & 51-52,55 A-55 D, 55-58,58 A-58 B, 59 A-59 D, 59-62, \\ & \text { 62A-62B, 63A-63D, 63-66, 66A-66B, 67A-67D, 67-70, } \\ & 70 A-70 B, 71-72,74,418 \end{aligned}$
5.C. 3	Compare the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication.	SE: 205-208, 213-214 TE: 205A-205D, 205-208, 208A-208B, 213-214
5.C. 4	Add and subtract fractions with unlike denominators, including mixed numbers.	SE: $141-144,145-146,153-156,157-160,161-166,167-170$, $175-176$ TE: $141 \mathrm{~A}-141 \mathrm{D}, 141-144,144 \mathrm{~A}-144 \mathrm{~B}, 145-146,153 \mathrm{~A}-$ $153 \mathrm{D}, 153-156,156 \mathrm{~A}-156 \mathrm{~B}, 157 \mathrm{~A}-157 \mathrm{D}, 157-160$, $160 \mathrm{~A}-160 \mathrm{~B}, 161 \mathrm{~A}-161 \mathrm{D}, 161-166,166 \mathrm{~A}-166 \mathrm{~B}, 167 \mathrm{~A}-$ $167 \mathrm{D}, 167-170,170 \mathrm{~A}-170 \mathrm{~B}, 175-176$
5.C. 5	Use visual fraction models and numbers to multiply a fraction by a fraction or a whole number.	$\begin{array}{ll} \text { SE: } & 237 \\ \text { TE: } & 237 \end{array}$
5.C. 6	Explain why multiplying a positive number by a fraction greater than 1 results in a product greater than the given number. Explain why multiplying a positive number by a fraction less than 1 results in a product smaller than the given number. Relate the principle of fraction equivalence, $a / b=(n$ $\times a) /(n \times b)$, to the effect of multiplying a / b by one.	SE: 181-184, 185-190, 191-194, 195-198, 199-204, 205-208, 209-212, 213-214, 225-228, 233-234 TE: 181A-181D, 181-184, 184A-184B, 185A-185D, 185190, 190A-190B, 191A-191D, 191-194, 194A-194B, 195A-195D, 195-198, 198A-198B, 199A-199D, 199204, 204A-204B, 205A-205D, 205-208, 208A-208B, 209A-209D, 209-212, 212A-212B, 213-214, 225A225D, 225-228, 228A-228B, 233-234

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 5

Standard	Descriptor	Citations
5.C. 7	Use visual fraction models and numbers to divide a unit fraction by a non-zero whole number and to divide a whole number by a unit fraction.	SE: 243-246, 247-252, 253-256, 257-262, 263-264, 267-270, 275-278, 283-286, 291-292 TE: 243A-243D, 243-246, 246A-246B, 247A-247D, 247252, 252A-252B, 253A-253D, 253-256, 256A-256B, 257A-257D, 257-262, 262A-262B, 263-264, 267A267D, 267-270, 270A-270B, 275A-275D, 275-278, 278A-278B, 283A-283D, 283-286, 286A-286B, 291-292
5.C. 8	Add, subtract, multiply, and divide decimals to hundredths, using models or drawings and strategies based on place value or the properties of operations. Describe the strategy and explain the reasoning.	SE: 339-342, 343-346, 347-350, 351-354, 355-358, 359-362, 363-364, 369-374, 375-378, 379-382, 383-388, 389-392, 393-396, 397-398, 401-404, 405-408, 409-412, 413-414, 425-428, 429-432, 433-436, 437-442, 443-446, 447-450, 451-452 TE: 339A-339D, 339-342, 342A-342B, 343A-343D, 343346, 346A-346B, 347A-347D, 347-350, 350A-350B, 351A-351D, 351-354, 354A-354B, 355A-355D, 355358, 358A-358B, 359A-359D, 359-362, 362A-362B, 363-364, 369A-369D, 369-374, 374A-374B, 375A375D, 375-378, 378A-378B, 379A-379D, 379-382, 382A-382B, 383A-383D, 383-388, 388A-388B, 389A389D, 389-392, 392A-392B, 393A-393D, 393-396, 396A-396B, 397-398, 401A-401D, 401-404, 404A-404B, 405A-405D, 405-408, 408A-408B, 409A-409D, 409412, 412A-412B, 413-414, 425A-425D, 425-428, 428A428B, 429A-429D, 429-432, 432A-432B, 433A-433D, 433-436, 436A-436B, 437A-437D, 437-442, 442A-442B, 443A-443D, 443-446, 446A-446B, 447A-447D, 447450, 450A-450B, 451-452
5.C. 9	Evaluate expressions with parentheses or brackets involving whole numbers using the commutative properties of addition and multiplication, associative properties of addition and multiplication, and distributive property.	```SE: 75-78, 79-82, 83-86, 87-90, 91-92 TE: 75A-75D, 75-78, 78A-78B, 79A-79D, 79-82, 82A-82B, 83A-83D, 83-86, 86A-86B, 87A-87D, 87-90, 90A-90B, 91-92```

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 5

Standard	Descriptor	Citations
ALGEBRAIC THINKING		
5.AT. 1	Solve real-world problems involving multiplication and division of whole numbers (e.g. by using equations to represent the problem). In division problems that involve a remainder, explain how the remainder affects the solution to the problem.	SE: 59-62, 71-72 TE: 59A-59D, 59-62, 62A-62B, 71-72
5.AT. 2	Solve real-world problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators (e.g., by using visual fraction models and equations to represent the problem). Use benchmark fractions and number sense of fractions to estimate mentally and assess whether the answer is reasonable.	$\begin{aligned} \text { SE: } & 129-132,133-136,137-140,145-146,149-152,157-160, \\ & 171-174,175-176 \\ \text { TE: } & 129 \mathrm{~A}-129 \mathrm{D}, 129-132,132 \mathrm{~A}-132 \mathrm{~B}, 133 \mathrm{~A}-133 \mathrm{D}, 133- \\ & 136,136 \mathrm{~A}-136 \mathrm{~B}, 137 \mathrm{~A}-137 \mathrm{D}, 137-140,140 \mathrm{~A}-140 \mathrm{~B}, \\ & 145-146,149 \mathrm{~A}-149 \mathrm{D}, 149-152,152 \mathrm{~A}-152 \mathrm{~B}, 157 \mathrm{~A}- \\ & \text { 157D, 157-160, 160A-160B, 171A-171D, 171-174, } \\ & \text { 174A-174B, 175-176 } \end{aligned}$
5.AT. 3	Solve real-world problems involving multiplication of fractions, including mixed numbers (e.g., by using visual fraction models and equations to represent the problem).	SE: 195-198, 213-214, 217-220, 221-224, 225-228, 229-232, 233-234 TE: 195A-195D, 195-198, 198A-198B, 213-214, 217A217D, 217-220, 220A-220B, 221A-221D, 221-224, 224A-224B, 225A-225D, 225-228, 228A-228B, 229A229D, 229-232, 232A-232B, 233-234
5.AT. 4	Solve real-world problems involving division of unit fractions by non-zero whole numbers, and division of whole numbers by unit fractions (e.g., by using visual fraction models and equations to represent the problem).	SE: 239-242, 247-252, 257-262, 263-264, 271-274, 275-278, 279-282, 283-286, 287-290, 291-292 TE: 239A-239D, 239-242, 242A-242B, 247A-247D, 247252, 252A-252B, 257A-257D, 257-262, 262A-262B, 263-264, 271A-271D, 271-274, 274A-274B, 275A275D, 275-278, 278A-278B, 279A-279D, 279-282, 282A-282B, 283A-283D, 283-286, 286A-286B, 287A287D, 287-290, 290A-290B, 291-292

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 5

Standard	Descriptor	Citations
5.AT. 5	Solve real-world problems involving addition, subtraction, multiplication, and division with decimals to hundredths, including problems that involve money in decimal notation (e.g. by using equations, models or drawings and strategies based on place value or properties of operations to represent the problem).	SE: 339-342, 343-346, 347-350, 351-354, 355-358, 359-362, 363-364, 369-374, 375-378, 379-382, 383-388, 389-392, 393-396, 397-398, 401-404, 405-408, 409-412, 413-414, 417, 425-428, 429-432, 433-436, 437-442, 443-446, 447-450, 451-452 TE: 339A-339D, 339-342, 342A-342B, 343A-343D, 343346, 346A-346B, 347A-347D, 347-350, 350A-350B, 351A-351D, 351-354, 354A-354B, 355A-355D, 355358, 358A-358B, 359A-359D, 359-362, 362A-362B, 363-364, 369A-369D, 369-374, 374A-374B, 375A375D, 375-378, 378A-378B, 379A-379D, 379-382, 382A-382B, 383A-383D, 383-388, 388A-388B, 389A389D, 389-392, 392A-392B, 393A-393D, 393-396, 396A-396B, 397-398, 401A-401D, 401-404, 404A-404B, 405A-405D, 405-408, 408A-408B, 409A-409D, 409412, 412A-412B, 413-414, 417, 425A-425D, 425-428, 428A-428B, 429A-429D, 429-432, 432A-432B, 433A433D, 433-436, 436A-436B, 437A-437D, 437-442, 442A-442B, 443A-443D, 443-446, 446A-446B, 447A447D, 447-450, 450A-450B, 451-452
5.AT. 6	Graph points with whole number coordinates on a coordinate plane. Explain how the coordinates relate the point as the distance from the origin on each axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x-axis and x-coordinate, y-axis and y-coordinate).	SE: 473-476, 493-494 TE: 473A-473D, 473-476, 476A-476B, 493-494
5.AT. 7	Represent real-world problems and equations by graphing ordered pairs in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.	$\begin{array}{ll} \text { SE: } & 477-480,481-484,493-494 \\ \text { TE: } & 477 \mathrm{~A}-477 \mathrm{D}, 477-480,480 \mathrm{~A}-480 \mathrm{~B}, 481 \mathrm{~A}-481 \mathrm{D}, 481- \\ & 484,484 \mathrm{~A}-484 \mathrm{~B}, 493-494 \end{array}$
5.AT. 8	Define and use up to two variables to write linear expressions that arise from real-world problems, and evaluate them for given values.	INsuccess: 1A, 1-6, 7A, 7-12

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 5

Standard	Descriptor	Citations
GEOMETRY		
5.G. 1	Identify, describe, and draw triangles (right, acute, obtuse) and circles using appropriate tools (e.g., ruler or straightedge, compass and technology). Understand the relationship between radius and diameter.	INsuccess: 79A, 79-84, 85A, 85-90
5.G. 2	Identify and classify polygons including quadrilaterals, pentagons, hexagons, and triangles (equilateral, isosceles, scalene, right, acute and obtuse) based on angle measures and sides. Classify polygons in a hierarchy based on properties.	SE: 496, 497-500, 501-504, 505-508, 509-512, 513-514 TE: 496, 497A-497D, 497-500, 500A-500B, 501A-501D, 501-504, 504A-504B, 509A-509D, 509-512, 512A-512B, 513-514 INsuccess: 79A, 79-84
MEASUREMENT		
5.M. 1	Convert among different-sized standard measurement units within a given measurement system, and use these conversions in solving multi-step real-world problems.	SE: 295-300, 301-304, 309-312, 313-314, 455-458, 459-462, 463-466, 467-468 TE: 295A-295D, 295-300, 300A-300B, 301A-301D, 301304, 304A-304B, 309A-309D, 309-312, 312A-312B, 313-314, 455A-455D, 455-458, 458A-458B, 459A459D, 459-462, 462A-462B, 463A-463D, 463-466, 466A-466B, 467-468
5.M. 2	Find the area of a rectangle with fractional side lengths by modeling with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.	```SE: 93, 199-204, 217-220, 229-232, 233-234 TE: 93, 199A-199D, 199-204, 204A-204B, 217A-217D, 217- 220, 220A-220B, 229A-229D, 229-232, 232A-232B, 233-234```
5.M. 3	Develop and use formulas for the area of triangles, parallelograms and trapezoids. Solve real-world and other mathematical problems that involve perimeter and area of triangles, parallelograms and trapezoids, using appropriate units for measures.	```INsuccess: 91A, 91-96, 97A, 97-102, 103A, 103-108, 109A, 109-114, 115A, 115-120, 121A, 121-126, 127A, 127-132```

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 5

Standard	Descriptor	Citations
5.M. 4	Find the volume of a right rectangular prism with wholenumber side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths or multiplying the height by the area of the base.	$\begin{aligned} \hline \text { SE: } & 95-98,99-102,103-106,107-112,113-116,123-124 \\ \text { TE: } & 95 \mathrm{~A}-95 \mathrm{D}, 95-98,98 \mathrm{~A}-98 \mathrm{~B}, 99 \mathrm{~A}-99 \mathrm{D}, 99-102,102 \mathrm{~A}- \\ & 102 \mathrm{~B}, 103 \mathrm{~A}-103 \mathrm{D}, 103-106,106 \mathrm{~A}-106 \mathrm{~B}, 107 \mathrm{~A}-107 \mathrm{D}, \\ & 107-112,112 \mathrm{~A}-112 \mathrm{~B}, 113 \mathrm{~A}-113 \mathrm{D}, 113-116,116 \mathrm{~A}-116 \mathrm{~B}, \\ & 123-124 \end{aligned}$
5.M. 5	Apply the formulas $\mathrm{V}=\mathrm{l} \times \mathrm{w} \times \mathrm{h}$ and $\mathrm{V}=\mathrm{B} \times \mathrm{h}$ for right rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths to solve real-world problems and other mathematical problems.	```SE: 107-112, 113-116, 123-124 TE: 107A-107D, 107-112, 112A-112B, 113A-113D, 113- 116, 116A-116B, 123-124```
5.M. 6	Find volumes of solid figures composed of two nonoverlapping right rectangular prisms by adding the volumes of the non-overlapping parts, applying this technique to solve real-world problems and other mathematical problems.	SE: 117-122, 123-124 TE: 117A-117D, 117-122, 122A-122B, 123-124
DATA ANALYSIS AND STATISTICS		
5.DS.1	Formulate questions that can be addressed with data and make predictions about the data. Use observations, surveys, and experiments to collect, represent, and interpret the data using tables (including frequency tables), line plots, bar graphs, and line graphs. Recognize the differences in representing categorical and numerical data.	SE: 305-308, 472 TE: 305A-305D, 305-308, 308A-308B, 472 INsuccess: 49A, 49-54, 55A, 55-60, 61A, 61-66, 73A, 73-78
5.DS. 2	Understand and use measures of center (mean and median) and frequency (mode) to describe a data set.	INsuccess: 67A, 67-72

Houghton Mifflin Harcourt

Into Math, Grade 6 ©2020
correlated to the
Indiana Academic Standards: Mathematics (2020)
Grade 6

Standard	Descriptor	Citations
PROCESS STANDARDS FOR MATHEMATICS		
PS. 1	Make sense of problems and persevere in solving them.	This standard is covered throughout the program. Representative pages include: SE: 21-26, 43-50, 85-90, 127-132, 167-174, 179-184, 221226, 253-260, 295-300, 321-326, 357-364, 401-408, 427-432, 453-460, 471-476, 509-516 TE: $\quad 21 \mathrm{~A}-26,43 \mathrm{~A}-50,85 \mathrm{~A}-90,127 \mathrm{~A}-132,167 \mathrm{~A}-174,179 \mathrm{~A}-$ 184, 221A-226, 253A-260, 295A-300, 321A-326, 357A364, 401A-408, 427A-432, 453A-460, 471A-476, 509A516
PS. 2	Reason abstractly and quantitatively.	This standard is covered throughout the program. Representative pages include: $\begin{aligned} \text { SE: } & 5-12,31-36,43-50,61-68,91-98,103-108,127-132, \\ & 145-152,167-174,185-192,193-200,213-220,233- \\ & 238,247-252,273-278,313-320,327-335,393-400, \\ & 439-444,471-476,487-492 \\ \text { TE: } & \text { 5A-12, 31A-36, 43A-50, 61A-68, 91A-98, 103A-108, } \\ & 127 \mathrm{~A}-132,145 \mathrm{~A}-152,167 \mathrm{~A}-174,185 \mathrm{~A}-192,193 \mathrm{~A}-200, \\ & 213 \mathrm{~A}-220,233 \mathrm{~A}-238,247 \mathrm{~A}-252,273 \mathrm{~A}-278,313 \mathrm{~A}-320, \\ & 327 \mathrm{~A}-335,393 \mathrm{~A}-400,439 \mathrm{~A}-444,471 \mathrm{~A}-476,487 \mathrm{~A}-492 \end{aligned}$

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 6

Standard	Descriptor	Citations
PS. 3	Construct viable arguments and critique the reasoning of others.	This standard is covered throughout the program. Representative pages include: $\begin{array}{ll} \text { SE: } & 5-12,37-42,43-50,69-76,85-90,115-120,127-132, \\ & 139-145,185-192,193-200,205-212,239-246,253- \\ & 260,273-278,327-334,393-400,401-408,439-444, \\ & 487-492 \\ \text { TE: } & \text { 5A-12, 37A-42, 43A-50, 69A-76, 85A-90, 115A-120, } \\ & 127 \mathrm{~A}-132,139 \mathrm{~A}-145,185 \mathrm{~A}-192,193 \mathrm{~A}-200,205 \mathrm{~A}-212, \\ & \text { 239A-246, 253A-260, 273A-278, 327A-334, 393A-400, } \\ & \text { 401A-408, 439A-444, 487A-492 } \end{array}$
PS. 4	Model with mathematics.	This standard is covered throughout the program. Representative pages include: $\begin{array}{ll} \text { SE: } & 13-20,43-50,61-68,77-84,115-120,145-152,193- \\ & 200,247-252,261-268,273-278,313-320,321-326, \\ & 327-334,385-392,401-408,413-420,453-460,465- \\ & 470,501-508 \\ \text { TE: } & 13 \mathrm{~A}-20,43 \mathrm{~A}-50,61 \mathrm{~A}-68,77 \mathrm{~A}-84,115 \mathrm{~A}-120,145 \mathrm{~A}- \\ & 152,193 \mathrm{~A}-200,247 \mathrm{~A}-252,261 \mathrm{~A}-268,273 \mathrm{~A}-278,313 \mathrm{~A}- \\ & 320,321 \mathrm{~A}-326,327 \mathrm{~A}-334,385 \mathrm{~A}-392,401 \mathrm{~A}-408,413 \mathrm{~A}- \\ & 420,453 \mathrm{~A}-460,465 \mathrm{~A}-470,501 \mathrm{~A}-508 \end{array}$
PS. 5	Use appropriate tools strategically.	This standard is covered throughout the program. Representative pages include: SE: $13-20,37-42,61-68,115-120,145-152,205-212,221-$ 226, 273-278, 301-308, 321-326, 341-348, 385-392, 413-420, 453-460, 471-476, 517-524 TE: 13A-20, 37A-42, 61A-68, 115A-120, 145A-152, 205A212, 221A-226, 273A-278, 301A-308, 321A-326, 341A348, 385A-392, 413A-420, 453A-460, 471A-476, 517A524

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 6

Standard	Descriptor	Citations
PS. 6	Attend to precision.	This standard is covered throughout the program. Representative pages include: SE: $\quad 21-26,37-42,85-90,91-98,109-114,139-144,159-$ 166, 179-184, 205-212, 213-220, 239-246, 273-278, 341-348, 385-392, 401-408, 445-452, 471-476, 487-492 TE: $\quad 21 \mathrm{~A}-26,37 \mathrm{~A}-42,85 \mathrm{~A}-90,91 \mathrm{~A}-98,109 \mathrm{~A}-114,139 \mathrm{~A}-$ 144, 159A-166, 179A-184, 205A-212, 213A-220, 239A- 246, 273A-278, 341A-348, 385A-392, 401A-408, 445A- 452, 471A-476, 487A-492
PS. 7	Look for and make use of structure.	This standard is covered throughout the program. Representative pages include: $\begin{array}{ll} \text { SE: } & 5-12,31-36,43-50,91-98,121-126,139-144,153-158, \\ & 167-174,179-184,205-212,221-226,253-260,261- \\ & 268,295-300,327-334,341-348,385-392,453-460, \\ & 487-492 \\ \text { TE: } & 5 \mathrm{~A}-12,31 \mathrm{~A}-36,43 \mathrm{~A}-50,91 \mathrm{~A}-98,121 \mathrm{~A}-126,139 \mathrm{~A}-144, \\ & 153 \mathrm{~A}-158,167 \mathrm{~A}-174,179 \mathrm{~A}-184,205 \mathrm{~A}-212,221 \mathrm{~A}-226, \\ & 253 \mathrm{~A}-260,261 \mathrm{~A}-268,295 \mathrm{~A}-300,327 \mathrm{~A}-334,341 \mathrm{~A}-348, \\ & 385 \mathrm{~A}-392,453 \mathrm{~A}-460,487 \mathrm{~A}-492 \end{array}$
PS. 8	Look for and express regularity in repeated reasoning.	This standard is covered throughout the program. Representative pages include: SE: $\quad 43-50,51-56,69-76,103-108,115-120,139-144,153-$ 158, 179-184, 213-220, 239-246, 261-268, 313-320, 327-334, 401-408, 453-460, 471-476, 517-524 TE: $\quad 43 \mathrm{~A}-50,51 \mathrm{~A}-56,69 \mathrm{~A}-76,103 \mathrm{~A}-108,115 \mathrm{~A}-120,139 \mathrm{~A}-$ 144, 153A-158, 179A-184, 213A-220, 239A-246, 261A268, 313A-320, 327A-334, 401A-408, 453A-460, 471A476, 517A-524

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 6

Standard	Descriptor	Citations
NUMBER SENSE		
6.NS. 1	Understand that positive and negative numbers are used to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge). Use positive and negative numbers to represent and compare quantities in real-world contexts, explaining the meaning of 0 in each situation.	$\begin{array}{ll} \text { SE: } & 5-12 \\ \text { TE: } & 5 \mathrm{~A}-12 \end{array}$
6.NS. 2	Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself (e.g., $-(-3)=3$), and that 0 is its own opposite.	$\begin{array}{ll} \text { SE: } & 5-12 \\ \text { TE: } & 5 A-12 \end{array}$
6.NS. 3	Compare and order rational numbers and plot them on a number line. Write, interpret, and explain statements of order for rational numbers in real-world contexts.	SE: $\quad 13-20,31-36,37-42,43-50,51-56$ TE: $\quad 13 \mathrm{~A}-20,31 \mathrm{~A}-36,37 \mathrm{~A}-42,43 \mathrm{~A}-50,51 \mathrm{~A}-56$
6.NS. 4	Understand that the absolute value of a number is the distance from zero on a number line. Find the absolute value of real numbers and know that the distance between two numbers on the number line is the absolute value of their difference. Interpret absolute value as magnitude for a positive or negative quantity in a real-world situation.	SE: 21-26, 31-36 TE: 21A-26, 31A-36 Appendix Lessons: A1.1, A1.2, A1.3, A1.4, A1.5, A1.6
6.NS. 5	Know commonly used fractions (halves, thirds, fourths, fifths, eighths, tenths) and their decimal and percent equivalents. Convert between any two representations (fractions, decimals, percents) of positive rational numbers without the use of a calculator.	This standard is partially covered in Grade 4. Students represent tenths and hundredths as fractions and decimals. See pages: SE: 299-302, 303-306, 307-310, 315-318 TE: 299A-299D, 299-302, 303A-303D, 303-306, 307A- 307D, 307-310, 315A-315D, 315-318
6.NS. 6	Identify and explain prime and composite numbers.	Appendix Lessons: A3.1, A3.4, A3.5, A3.6

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 6

Standard	Descriptor	Citations
6.NS. 7	Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12 . Use the distributive property to express a sum of two whole numbers from 1 to 100, with a common factor as a multiple of a sum of two whole numbers with no common factor.	SE: 43-50, 91-98 TE: 43A-50, 91A-98
6.NS.8	Interpret, model, and use ratios to show the relative sizes of two quantities. Describe how a ratio shows the relationship between two quantities. Use the following notations: a / b, a to b, a:b.	SE: 145-152, 153-158, 167-174, 179-184 TE: $145 \mathrm{~A}-152,153 \mathrm{~A}-158,167 \mathrm{~A}-174,179 \mathrm{~A}-184$ Appendix Lessons: A2.1, A2.2, A2.3, A2.4, A2.5, A2.6
6.NS. 9	Understand the concept of a unit rate and use terms related to rate in the context of a ratio relationship.	SE: 139-144, 145-152, 159-166 TE: 139A-144, 145A-152, 159A-166
6.NS. 10	Use reasoning involving rates and ratios to model real-world and other mathematical problems (e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations).	$\begin{array}{ll} \hline \text { SE: } & 145-152,153-158,159-166,167-174,179-184,185- \\ & 192,193-200 \\ \text { TE: } & 145 \mathrm{~A}-152,153 \mathrm{~A}-158,159 \mathrm{~A}-166,167 \mathrm{~A}-174,179 \mathrm{~A}- \\ & 184,185 \mathrm{~A}-192,193 \mathrm{~A}-200 \end{array}$
COMPUTATION		
6.C. 1	Divide multi-digit whole numbers fluently using a standard algorithmic approach.	SE: $115-120$ TE: $115 \mathrm{~A}-120$
6.C. 2	Compute with positive fractions and positive decimals fluently using a standard algorithmic approach.	$\begin{array}{ll} \hline \text { SE: } & 61-68,69-76,77-84,85-90,91-98,103-108,109-114, \\ & 121-126,127-132 \\ \text { TE: } & 61 \mathrm{~A}-68,69 \mathrm{~A}-76,77 \mathrm{~A}-84,85 \mathrm{~A}-90,91 \mathrm{~A}-98,103 \mathrm{~A}-108, \\ & 109 \mathrm{~A}-114,121 \mathrm{~A}-126,127 \mathrm{~A}-132 \end{array}$
6.C. 3	Solve real-world problems with positive fractions and decimals by using one or two operations.	$\begin{array}{ll} \mathrm{SE}: & 61-68,69-76,77-84,85-90,91-98,103-108,109-114, \\ & 121-126,127-132 \\ \mathrm{TE}: & 61 \mathrm{~A}-68,69 \mathrm{~A}-76,77 \mathrm{~A}-84,85 \mathrm{~A}-90,91 \mathrm{~A}-98,103 \mathrm{~A}-108, \\ & 109 \mathrm{~A}-114,121 \mathrm{~A}-126,127 \mathrm{~A}-132 \end{array}$

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 6

Standard	Descriptor	Citations
6.C. 4	Compute quotients of positive fractions and solve real-world problems involving division of fractions by fractions. Use a visual fraction model and/or equation to represent these calculations.	SE: $\quad 61-68,69-76,77-84,85-90,91-98$ TE: 61A-68, 69A-76, 77A-84, 85A-90, 91A-98
6.C. 5	Evaluate positive rational numbers with whole number exponents.	SE: 233-238, 239-246, 253-260 TE: 233A-238, 239A-246
6.C. 6	Apply the order of operations and properties of operations (identity, inverse, commutative properties of addition and multiplication, associative properties of addition and multiplication, and distributive property) to evaluate numerical expressions with nonnegative rational numbers, including those using grouping symbols, such as parentheses, and involving whole number exponents.	SE: $239-246,253-260,261-268,377-384,385-392,393-$ $400,421-426,427-432$ TE: $239 A-246,253 \mathrm{~A}-260,261 \mathrm{~A}-268,377 \mathrm{~A}-384,385 \mathrm{~A}-$ $392,393 \mathrm{~A}-400,421 \mathrm{~A}-426,427 \mathrm{~A}-432$
ALGEBRAIC AND FUNCTIONS		
6.AF. 1	Evaluate expressions for specific values of their variables, including expressions with whole-number exponents and those that arise from formulas used in geometry and other real-world problems.	SE: $253-246,377-384,385-392,393-400,421-426,427-$ 432 TE: $253 \mathrm{~A}-246,377 \mathrm{~A}-384,385 \mathrm{~A}-392,393 \mathrm{~A}-400,421 \mathrm{~A}-$ $426,427 \mathrm{~A}-432$
6.AF. 2	Apply the properties of operations (e.g., identity, inverse, commutative, associative, distributive properties) to create equivalent linear expressions and to justify whether two linear expressions are equivalent when the two expressions name the same number regardless of which value is substituted into them.	SE: 261-268, 279-286, 287-294 TE: 261A-268, 279A-286, 287A-294
6.AF. 3	Define and use multiple variables when writing expressions to represent real-world and other mathematical problems, and evaluate them for given values.	SE: 247-252, 253-260, 273-278 TE: 247A-252, 253A-260, 273A-278

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 6

Standard	Descriptor	Citations
6.AF. 4	Understand that solving an equation or inequality is the process of answering the following question: Which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.	SE: 279-286, 287-294, 295-300, 301-308 TE: 279A-286, 287A-294, 295A-300, 301A-308
6.AF. 5	Solve equations of the form $\mathrm{x}+\mathrm{p}=\mathrm{q}, \mathrm{x}-\mathrm{p}=\mathrm{q}, \mathrm{px}=\mathrm{q}$, and $\mathrm{x} / \mathrm{p}=\mathrm{q}$ fluently for cases in which p, q and x are all nonnegative rational numbers. Represent real-world problems using equations of these forms and solve such problems.	SE: 279-286, 287-294, 295-300 TE: 279A-286, 287A-294, 295A-300
6.AF. 6	Write an inequality of the form $\mathrm{x}>\mathrm{c}, \mathrm{x} \geq \mathrm{c}, \mathrm{x}<\mathrm{c}$, or $\mathrm{x} \leq \mathrm{c}$, where c is a rational number, to represent a constraint or condition in a real-world or other mathematical problem. Recognize inequalities have infinitely many solutions and represent solutions on a number line diagram.	SE: 301-308 TE: 301A-308
$6 . A F .7$	Understand that signs of numbers in ordered pairs indicate the quadrant containing the point. Identify rules or patterns in the signs as they relate to the quadrants. Graph points with rational number coordinates on a coordinate plane.	SE: 341-348, 349-356, 357-364, 365-372 TE: 341A-348, 349A-356, 357A-364, 365A-372
6.AF. 8	Solve real-world and other mathematical problems by graphing points with rational number coordinates on a coordinate plane. Include the use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.	SE: 341-348, 349-356, 357-364, 365-372 TE: 341A-348, 349A-356, 357A-364, 365A-372
6.AF. 9	Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane.	SE: 145-152, 153-158, 357-364 TE: 145A-152, 153A-158, 357A-364

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 6

Standard	Descriptor	Citations
6.AF. 10	Use variables to represent two quantities in a proportional relationship in a real-world problem; write an equation to express one quantity, the dependent variable, in terms of the other quantity, the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation.	$\begin{array}{ll}\text { SE: } & 313-320,321-326,327-334 \\ \text { TE: } & 313 A-320,321 A-326,327 A-334\end{array}$
GEOMETRY AND MEASUREMENT		
6.GM. 1	Convert between measurement systems (English to metric and metric to English) given conversion factors, and use these conversions in solving real-world problems.	SE: $193-200$ TE: $193 A-200$
6.GM. 2	Know that the sum of the interior angles of any triangle is 180° and that the sum of the interior angles of any quadrilateral is 360°. Use this information to solve realworld and mathematical problems.	Appendix Lessons: A4.1, A4.2, A4.3, A4.4, A4.5, A4.6
6.GM. 3	Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate; apply these techniques to solve real-world and other mathematical problems.	SE: 349-356, 365-372 TE: 349A-356, 365A-372
6.GM. 4	Find the area of complex shapes composed of polygons by composing or decomposing into simple shapes; apply this technique to solve real-world and other mathematical problems.	$\begin{array}{ll} \hline \text { SE: } & 401-408 \\ \text { TE: } & 401 \mathrm{~A}-408 \end{array}$

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 6

Standard	Descriptor	Citations
6.GM. 5	Find the volume of a right rectangular prism with fractional edge lengths using unit cubes of the appropriate unit fraction edge lengths (e.g., using technology or concrete materials), and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $\mathrm{V}=\mathrm{lwh}$ and $\mathrm{V}=\mathrm{Bh}$ to find volumes of right rectangular prisms with fractional edge lengths to solve real-world and other mathematical problems.	SE: $421-426,427-432$ TE: $421 \mathrm{~A}-426,427 \mathrm{~A}-432$
6.GM. 6	Construct right rectangular prisms from nets and use the nets to compute the surface area of prisms; apply this technique to solve real-world and other mathematical problems.	SE: 413-420 TE: 413A-420 Appendix Lessons: A5.1, A5.2, A5.3, A5.4, A5.5, A5.6
DATA ANALYSIS AND STATISTICS		
6.DS. 1	Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for the variability in the answers. Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.	$\begin{array}{ll} \hline \text { SE: } & 439-444,471-476,477-482,487-482,493-500,509- \\ & 516,517-524 \\ \text { TE: } & 439 \mathrm{~A}-444,471 \mathrm{~A}-476,477 \mathrm{~A}-482,487 \mathrm{~A}-482,493 \mathrm{~A}-500, \\ & 509 \mathrm{~A}-516,517 \mathrm{~A}-524 \end{array}$
6.DS. 2	Select, create, and interpret graphical representations of numerical data, including line plots, histograms, and box plots.	SE: $445-452,453-460,477-482,487-492,493-500,517-$ 524 TE: $445 \mathrm{~A}-452,453 \mathrm{~A}-460,477 \mathrm{~A}-482,487 \mathrm{~A}-492,493-500$, $517 \mathrm{~A}-524$
6.DS. 3	Formulate statistical questions; collect and organize the data (e.g., using technology); display and interpret the data with graphical representations (e.g., using technology).	SE: 445-452, 477-482, 487-492, 493-500, 517-524 TE: $\quad 445 \mathrm{~A}-452,477 \mathrm{~A}-482,487 \mathrm{~A}-492,493 \mathrm{~A}-500,517 \mathrm{~A}-524$ Appendix Lessons: A6.1, A6.2, A6.3, A6.4, A6.5, A6.6

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 6

Standard	Descriptor		Citations
6.DS. 4	Summarize numerical data sets in relation to their context in multiple ways, such as: - report the number of observations - describe the nature of the attribute under investigation, including how it was measured and its units of measurement - determine quantitative measures of center (mean and/or median) and spread (range and interquartile range) - describe any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered - relate the choice of measures of center and spread to the shape of the data distribution and the context in which the data were gathered	SE: TE:	$\begin{aligned} & 439-444,465-470,471-476,477-482,487-492,493- \\ & 500,501-508,509-516,517-524 \\ & 439 \mathrm{~A}-444,465 \mathrm{~A}-470,471 \mathrm{~A}-476,477 \mathrm{~A}-482,487 \mathrm{~A}-492 \text {, } \\ & 493 \mathrm{~A}-500,501 \mathrm{~A}-508,509 \mathrm{~A}-516,517 \mathrm{~A}-524 \end{aligned}$

Houghton Mifflin Harcourt
 Into Math, Grade 7 ©2020
 correlated to the
 Indiana Academic Standards: Mathematics (2020)
 Grade 7

Standard	Descriptor	Citations
PROCESS STANDARDS FOR MATHEMATICS		
PS. 1	Make sense of problems and persevere in solving them.	This standard is covered throughout the program. Representative pages include: SE: 19-26, 63-70, 79-86, 101-108, 117-124, 153-160, 187192, 209-216, 243-250, 251-258, 279-286, 317-322, 333340, 377-384, 405-410, 427-434, 463-470, 491-498 TE: 19A-26, 63A-70, 79A-86, 101A-108, 117A-124, 153A160, 187A-192, 209A-216, 243A-250, 251A-258, 279A286, 317A-322, 333A-340, 377A-384, 405A-410, 427A434, 463A-470, 491A-498
PS. 2	Reason abstractly and quantitatively.	This standard is covered throughout the program. Representative pages include: SE: $5-10,63-70,71-78,101-108,137-144,179-188,197-$ 202, 223-228, 229-236, 263-270, 278-286, 301-308, 316322, 327-332, 333-340, 341-348, 359-364, 391-396, 405411, 415-420, 427-434, 475-482 TE: $5 \mathrm{~A}-10,63 \mathrm{~A}-70,71 \mathrm{~A}-78,101 \mathrm{~A}-108,137 \mathrm{~A}-144,179 \mathrm{~A}-$ 188, 197A-202, 223A-228, 229A-236, 263A-270, 278A286, 301A-308, 316A-322, 327A-332, 333A-340, 341A348, 359A-364, 391A-396, 405A-411, 415A-420, 427A434, 475A-482

Houghton Mifflin Harcourt Into Math ©2020 correlated to the Indiana Academic Standards: Mathematics (2020), Grade 7

Standard	Descriptor	Citations
PS. 3	Construct viable arguments and critique the reasoning of others.	This standard is covered throughout the program. Representative pages include: $\begin{array}{ll} \text { SE: } & 27-34,55-62,109-116,117-124,145-152,153-160,165- \\ & 172,173-178,203-208,209-216,263-270,271-278,301- \\ & 308,309-317,327-332,391-396,405-411,421-426,427- \\ & 434,447-454,491-498 \\ \text { TE: } & 27 \mathrm{~A}-34,55 \mathrm{~A}-62,109 \mathrm{~A}-116,117 \mathrm{~A}-124,145 \mathrm{~A}-152, \\ & \text { 153A-160, 165A-172, 173A-178, 203A-208, 209A-216, } \\ & \text { 263A-270, 271A-278, 301A-308, 309A-317, 327A-332, } \\ & \text { 391A-396, 405A-411, 421A-426, 427A-434, 447A-454, } \\ & \text { 491A-498 } \end{array}$
PS. 4	Model with mathematics.	This standard is covered throughout the program. Representative pages include: SE: 11-18, 19-26, 63-70, 129-136, 165-172, 197-202, 229- 236, 237-242, 263-270, 271-278, 301-308, 349-354, 359- 364, 365-370, 377-384, 415-420, 447-454, 463-470, 483490 TE: 11A-18, 19A-26, 63A-70, 129A-136, 165A-172, 197A- 202, 229A-236, 237A-242, 263A-270, 271A-278, 301A- 308, 349A-354, 359A-364, 365A-370, 377A-384, 415A- 420, 447A-454, 463A-470, 483A-490
PS. 5	Use appropriate tools strategically.	This standard is covered throughout the program. Representative pages include: SE: 11-18, 109-116, 145-152, 165-172, 197-202, 209-216, 251-258, 293-300, 301-308, 309-316, 317-322, 327-332, 349-354, 359-364, 371-376, 415-420, 447-454, 491-498 TE: 11A-18, 109A-116, 145A-152, 165A-172, 197A-202, 209A-216, 251A-258, 293A-300, 301A-308, 309A-316, 317A-322, 327A-332, 349A-354, 359A-364, 371A-376, 415A-420, 447A-454, 491A-498

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 7

Standard	Descriptor	Citations
PS. 6	Attend to precision.	This standard is covered throughout the program. Representative pages include: SE: 43-50, 55-62, 71-78, 153-160, 187-192, 197-202, 209- 216, 243-250, 251-258, 263-270, 279-286, 293-300, 327- 332, 349-354, 365-370, 377-384, 405-410, 421-426, 463- 470, 491-498 TE: $43 \mathrm{~A}-50,55 \mathrm{~A}-62,71 \mathrm{~A}-78,153 \mathrm{~A}-160,187 \mathrm{~A}-192,197 \mathrm{~A}-$ 202, 209A-216, 243A-250, 251A-258, 263A-270, 279A- 286, 293A-300, 327A-332, 349A-354, 365A-370, 377A- 384, 405A-410, 421A-426, 463A-470, 491A-498
PS. 7	Look for and make use of structure.	This standard is covered throughout the program. Representative pages include: SE: 43-50, 129-136, 153-160, 173-178, 197-202, 203-208, 223-228, 251-258, 263-270, 301-308, 327-332, 333-340, 349-354, 359-364, 365-370, 371-376, 377-384, 397-404, 415-420, 427-434, 447-454, 475-482 TE: 43A-50, 129A-136, 153A-160, 173A-178, 197A-202, 203A-208, 223A-228, 251A-258, 263A-270, 301A-308, 327A-332, 333A-340, 349A-354, 359A-364, 365A-370, 371A-376, 377A-384, 397A-404, 415A-420, 427A-434, 447A-454, 475A-482
PS. 8	Look for and express regularity in repeated reasoning.	This standard is covered throughout the program. Representative pages include: SE: 11-18, 153-160, 165-172, 179-188, 251-258, 271-278, 279-286, 293-300, 301-308, 327-332, 333-340, 341-348, 359-364, 365-370, 397-404, 405-410, 427-434, 447-454, 491-498 TE: $11 \mathrm{~A}-18,153 \mathrm{~A}-160,165 \mathrm{~A}-172,179 \mathrm{~A}-188,251 \mathrm{~A}-258$, 271A-278, 279A-286, 293A-300, 301A-308, 327A-332, 333A-340, 341A-348, 359A-364, 365A-370, 397A-404, $405 \mathrm{~A}-410,427 \mathrm{~A}-434,447 \mathrm{~A}-454,491 \mathrm{~A}-498$

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 7

Standard	Descriptor	Citations
NUMBER SENSE		
7.NS. 1	Find the prime factorization of whole numbers and write the results using exponents.	Appendix Lesson: A1.1, A1.2, A1.3, A1.4, A1.5, A1.6
7.NS. 2	Understand the inverse relationship between squaring and finding the square root of a perfect square whole number. Find square roots of perfect square whole numbers.	Appendix Lesson: A2.1, A2.2, A2.3, A2.4, A2.5, A2.6
7.NS.3	Know there are rational and irrational numbers. Identify, compare, and order rational and common irrational numbers $(\sqrt{ } 2, \sqrt{ } 3, \sqrt{ } 5, \Pi)$ and plot them on a number line.	Appendix Lesson: A3.1, A3.2, A3.3, A3.4, A3.5, A3.6
COMPUTATION		
7.C. 1	Understand $\mathrm{p}+\mathrm{q}$ as the number located a distance $\|\mathrm{q}\|$ from p , in the positive or negative direction, depending on whether q is positive or negative. Show on a number line that a number and its opposite have a sum of 0 (are additive inverses). Find and interpret sums of rational numbers in real-world contexts.	SE: $101-108,109-116,117-124,129-136,145-152,153-160$ TE: $101 \mathrm{~A}-108,109 \mathrm{~A}-116,117 \mathrm{~A}-124,129 \mathrm{~A}-136,145 \mathrm{~A}-152$, $153 \mathrm{~A}-160$
7.C. 2	Understand subtraction of rational numbers as adding the additive inverse, $\mathrm{p}-\mathrm{q}=\mathrm{p}+(-\mathrm{q})$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts.	$\begin{aligned} \text { SE: } & 101-108,109-116,117-124,137-144,145-152,153-160 \\ \text { TE: } & 101 \mathrm{~A}-108,109 \mathrm{~A}-116,117 \mathrm{~A}-124,137 \mathrm{~A}-144,145 \mathrm{~A}-152, \\ & 153 \mathrm{~A}-160 \end{aligned}$
7.C. 3	Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1)=1$ and the rules for multiplying signed numbers.	SE: 165-172, 173-178, 187-192 TE: 165A-172, 173A-178, 187A-192
7.C. 4	Understand that integers can be divided, provided that the divisor is not zero. Understand that if p and q are integers, then $-(p / q)=(-p) / q=p /(-q)$.	SE: 165-172, 179-186, 187-192 TE: 165A-172, 179A-186, 187A-192

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 7

Standard	Descriptor	Citations
7.C. 5	Compute unit rates associated with ratios of fractions, including ratios of lengths, areas, and other quantities measured in like or different units.	SE: 19-26, 27-34, 35-42 TE: 19A-26, 27A-34, 35A-42
7.C. 6	Use proportional relationships to solve ratio and percent problems with multiple operations (e.g. simple interest, tax, markups, markdowns, gratuities, conversions within and across measurement systems, and percent increase and decrease).	$\begin{aligned} \hline \text { SE: } & 35-42,43-50,55-62,63-70,71-78,79-86,87-94 \\ \text { TE: } & 35 \mathrm{~A}-42,43 \mathrm{~A}-50,55 \mathrm{~A}-62,63 \mathrm{~A}-70,71 \mathrm{~A}-78,79 \mathrm{~A}-86, \\ & 87 \mathrm{~A}-94 \end{aligned} \quad \begin{aligned} \text { Appendix Lesson: } & \text { A7.1, A7.2, A7.3, A7.4, A7.5, A7.6, A7.7, } \\ & \text { A7.8, A8.1, A8.2, A8.3, A8.4, A8.5, A8.6, } \\ & \text { A9.1, A9.2, A9.3, A9.4, A9.5, A9.6 } \end{aligned}$
7.C. 7	Compute with rational numbers fluently using a standard algorithmic approach.	$\begin{array}{ll} \text { SE: } & 145-152,153-160,173-178,187-192,197-202,203- \\ & 208,209-216 \\ \text { TE: } & 145 \mathrm{~A}-152,153 \mathrm{~A}-160,173 \mathrm{~A}-178,187 \mathrm{~A}-192,197 \mathrm{~A}-202, \\ & 203 \mathrm{~A}-208,209 \mathrm{~A}-216 \end{array}$
7.C. 8	Solve real-world problems with rational numbers by using one or two operations.	$\begin{array}{ll} \text { SE: } & 101-108,109-116,117-124,129-136,137-144,145- \\ & 152,153-160,173-178,187-192,197-202,203-208, \\ & 209-216 \\ \text { TE: } & 101 \mathrm{~A}-108,109 \mathrm{~A}-116,117 \mathrm{~A}-124,129 \mathrm{~A}-136,137 \mathrm{~A}-144, \\ & 145 \mathrm{~A}-152,153 \mathrm{~A}-160,173 \mathrm{~A}-178,187 \mathrm{~A}-192,197 \mathrm{~A}-202, \\ & 203 \mathrm{~A}-208,209 \mathrm{~A}-216 \end{array}$
ALGEBRA AND FUNCTIONS		
7.AF. 1	Apply the properties of operations (e.g., identity, inverse, commutative, associative, distributive properties) to create equivalent linear expressions, including situations that involve factoring out a common number (e.g., given $2 \mathrm{x}-10$, create an equivalent expression 2(x-5)). Justify each step in the process.	SE: 223-228, 229-236 TE: 223A-228, 229A-236 Appendix Lesson: A10.1, A10.2, A10.3, A10.4, A10.5-A10.6

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 7

Standard	Descriptor	Citations
7.AF. 2	Solve equations of the form $p x+q=r$ and $p(x+q)=r$ fluently, where p, q, and r are specific rational numbers. Represent real-world problems using equations of these forms and solve such problems.	SE: 243-250, 251-258 TE: 243A-250, 251A-258
7.AF. 3	Solve inequalities of the form $\mathrm{px}+\mathrm{q}(>$ or $\geq) \mathrm{r}$ or $\mathrm{px}+\mathrm{q}(<$ or $\leq) \mathrm{r}$, where p, q, and r are specific rational numbers. Represent real-world problems using inequalities of these forms and solve such problems. Graph the solution set of the inequality and interpret it in the context of the problem.	SE: 263-270, 279-286 TE: 263A-270, 279A-286
7.AF. 4	Define slope as vertical change for each unit of horizontal change and recognize that a constant rate of change or constant slope describes a linear function. Identify and describe situations with constant or varying rates of change.	$\begin{array}{ll} \text { Appendix Lesson: } & \text { A4.1, A4.2, A4.3, A4.4, A4.5, A4.6, A6.1, } \\ & \text { A6.2, A6.3, A6.4, A6.5, A6.6 } \end{array}$
7.AF. 5	Graph a line given its slope and a point on the line. Find the slope of a line given its graph.	Appendix Lesson: A5.1, A5.2, A5.3, A5.4, A5.5, A5.6
7.AF. 6	Decide whether two quantities are in a proportional relationship (e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin).	SE: 11-18, 27-34 TE: 11A-18, 27A-34
7.AF. 7	Identify the unit rate or constant of proportionality in tables, graphs, equations, and verbal descriptions of proportional relationships.	SE: 5-10, 11-18, 19-26, 27-34, 35-42 TE: $\quad 5 \mathrm{~A}-10,11 \mathrm{~A}-18,19 \mathrm{~A}-26,27 \mathrm{~A}-34,35 \mathrm{~A}-42$
7.AF. 8	Explain what the coordinates of a point on the graph of a proportional relationship mean in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$, where r is the unit rate.	$\begin{array}{ll} \text { SE: } & 27-34 \\ \text { TE: } & 27 A-34 \end{array}$

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 7

Standard	Descriptor	Citations
7.AF. 9	Represent real-world and other mathematical situations that involve proportional relationships. Write equations and draw graphs to represent these proportional relationships. Recognize that these situations are described by a linear function in the form $\mathrm{y}=\mathrm{mx}$, where the unit rate, m , is the slope of the line.	This standard is covered in Grade 8, see pages: SE: 137-144, 145-152, 153-160, 161-168, 173-180, 181-188, 189-196, 197-204, 205-212 TE: 137A-137D, 137-144, 145A-145D, 145-152, 153A- 153D, 153-160, 161A-161D, 161-168, 173A-173D, 173- 180, 181A-181D, 181-188, 189A-189D, 189-196, 197A- 197D, 197-204, 205A-205D, 205-212
GEOMETRY AND MEASUREMENT		
7.GM. 1	Explore triangles with given conditions from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.	SE: 293-300, 301-308, 309-316, 317-322 TE: 293A-300, 301A-308, 309A-316, 317A-322
7.GM. 2	Identify and describe similarity relationships of polygons including the angle-angle criterion for similar triangles, and solve problems involving similarity.	Appendix Lesson: A11.1, A11.2, A11.3, A11.4, A11.5, A11.6, A12.1, A12.2, A12.3, A12.4, A12.5, A12.6
7.GM. 3	Solve real-world and other mathematical problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing. Create a scale drawing by using proportional reasoning.	$\begin{array}{ll} \text { SE: } & 43-50 \\ \text { TE: } & 43 A-50 \end{array}$
7.GM. 4	Solve real-world and other mathematical problems using facts about vertical, adjacent, complementary, and supplementary angles.	SE: 251-258 TE: 251A-258 Appendix Lesson: A13.1, A13.2, A13.3, A13.4, A13.5, A13.6
7.GM. 5	Understand the formulas for area and circumference of a circle and use them to solve real-world and other mathematical problems; give an informal derivation of the relationship between circumference and area of a circle.	SE: 327-332, 333-340 TE: 327A-332, 333A-340
7.GM. 6	Solve real-world and other mathematical problems involving volume of cylinders and three-dimensional objects composed of right rectangular prisms.	Appendix Lesson: A15.1, A15.2, A15.3, A15.4, A15.5, A15.6

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 7

Standard	Descriptor	Citations
7.GM. 7	Construct nets for right rectangular prisms and cylinders and use the nets to compute the surface area; apply this technique to solve real-world and other mathematical problems.	SE: 365-370 TE: 365A-370 Appendix Lesson: A14.1, A14.2, A14.3, A14.4, A14.5, A14.6
DATA ANALYSIS, STATISTICS, AND PROBABILITY		
7.DSP. 1	Understand that statistics can be used to gain information about a population by examining a sample of the population. Understand that conclusions and generalizations about a population from a sample are valid only if the sample is representative of that population and that random sampling tends to produce representative samples and support valid inferences.	$\begin{array}{ll} \hline \text { SE: } & 391-396 \\ \text { TE: } & 391 \mathrm{~A}-396 \end{array}$
7.DSP. 2	Use data from a random sample to draw inferences about a population. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions.	$\begin{array}{ll} \text { SE: } & 397-404,405-410 \\ \text { TE: } & 397 A-404,405 A-410 \end{array}$
7.DSP. 3	Find, use, and interpret measures of center (mean and median) and measures of spread (range, interquartile range, and mean absolute deviation) for numerical data from random samples to draw comparative inferences about two populations.	SE: 415-420, 421-426, 427-434 TE: $415 \mathrm{~A}-420,421 \mathrm{~A}-426,427 \mathrm{~A}-434$ Appendix Lesson: A16.1, A16.2, A163, A16.4, A16.5, A16.6
7.DSP. 4	Make observations about the degree of visual overlap of two numerical data distributions represented in line plots or box plots. Describe how data, particularly outliers, added to a data set may affect the mean and/or median.	SE: 415-420, 421-426, 427-434 TE: $415 \mathrm{~A}-420,421 \mathrm{~A}-426,427 \mathrm{~A}-434$ Appendix Lesson: A16.1, A16.2, A16.3, A16.4, A16.5, A16.6

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 7

Standard	Descriptor	Citations
7.DSP. 5	Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Understand that a probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event. Understand that a probability of 1 indicates an event certain to occur and a probability of 0 indicates an event impossible to occur. Identify probabilities of events as impossible, unlikely, equally likely, likely, or certain.	SE: 441-446, 483-490 TE: 441A-446, 483A-490
7.DSP. 6	Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its relative frequency from a large sample.	$\begin{array}{ll} \hline \text { SE: } & 447-454,455-462,463-470,475-482,483-490,491-498 \\ \text { TE: } & 447 \mathrm{~A}-454,455 \mathrm{~A}-462,463 \mathrm{~A}-470,475 \mathrm{~A}-482,483 \mathrm{~A}-490, \\ & 491 \mathrm{AA}-498 \end{array}$
7.DSP. 7	Develop probability models that include the sample space and probabilities of outcomes to represent simple events with equally likely outcomes. Predict the approximate relative frequency of the event based on the model. Compare probabilities from the model to observed frequencies; evaluate the level of agreement and explain possible sources of discrepancy.	SE: 447-454, 475-482, 491-498 TE: 447A-454, 475-482, 491A-498

Houghton Mifflin Harcourt

Into Math, Grade 8 ©2020
correlated to the
Indiana Academic Standards: Mathematics (2020)
Grade 8

Standard	Descriptor	Citations
PROCESS STANDARDS FOR MATHEMATICS		
PS. 1	Make sense of problems and persevere in solving them.	This standard is covered throughout the program. Representative pages include: SE: $\quad 21-28,57-65,79-86,123-130,153-160,161-168,189-$ 196, 213-220, 265-272, 279-286, 295-302, 307-314, 323-330, 381-388, 389-396, 419-426, 455-462 TE: $\quad 21 \mathrm{~A}-28,57 \mathrm{~A}-65,79 \mathrm{~A}-86,123 \mathrm{~A}-130,153 \mathrm{~A}-160,161 \mathrm{~A}-$ 168, 189A-196, 213A-220, 265A-272, 279A-286, 295A302, 307A-314, 323A-330, 381A-388, 389A-396, 419A426, 455A-462
PS. 2	Reason abstractly and quantitatively.	This standard is covered throughout the program. Representative pages include: SE: $\quad 5-12,21-28,49-56,79-86,95-102,115-122,123-130$, 145-152, 153-160, 173-180, 181-188, 197-204, 233240, 257-264, 287-294, 307-314, 315-322, 337-344, 345-352, 353-360, 381-388, 389-396, 419-426, 439-446 TE: $\quad 5 \mathrm{~A}-12,21 \mathrm{~A}-28,49 \mathrm{~A}-56,79 \mathrm{~A}-86,95 \mathrm{~A}-102,115 \mathrm{~A}-122$, 123A-130, 145A-152, 153A-160, 173A-180, 181A-188, 197A-204, 233A-240, 257A-264, 287A-294, 307A-314, 315A-322, 337A-344, 345A-352, 353A-360, 381A-388, 389A-396, 419A-426, 439A-446

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 8

Standard	Descriptor	Citations
PS. 3	Construct viable arguments and critique the reasoning of others.	This standard is covered throughout the program. Representative pages include: SE: 13-20, 21-28, 37-44, 65-72, 79-86, 87-94, 95-102, 107- 114, 153-160, 173-180, 189-196, 225-232, 233-250, 249-256, 265-272, 279-286, 287-294, 323-330, 337- 344, 365-372, 389-396, 419-426, 447-454 TE: $\quad 13 \mathrm{~A}-20,21 \mathrm{~A}-28,37 \mathrm{~A}-44,65 \mathrm{~A}-72,79 \mathrm{~A}-86,87 \mathrm{~A}-94$, 95A-102, 107A-114, 153A-160, 173A-180, 189A-196, 225A-232, 233A-250, 249AA-256, 265-272, 279A-286, 287A-294, 323A-330, 337A-344, 365A-372, 389A-396, 419A-426, 447A-454
PS. 4	Model with mathematics.	This standard is covered throughout the program. Representative pages include: $\begin{aligned} \text { SE: } & 13-20,57-64,79-86,95-102,107-114,115-122,123- \\ & 130,137-144,145-152,173-180,181-188,197-204, \\ & 225-232,265-272,295-302,365-372,381-388,419- \\ & 426,439-446 \\ \text { TE: } & 13 \mathrm{~A}-20,57 \mathrm{~A}-64,79 \mathrm{~A}-86,95 \mathrm{~A}-102,107 \mathrm{~A}-114,115 \mathrm{~A}- \\ & 122,123 \mathrm{~A}-130,137 \mathrm{~A}-144,145 \mathrm{~A}-152,173 \mathrm{~A}-180,181 \mathrm{~A}- \\ & 188,197 \mathrm{~A}-204,225 \mathrm{~A}-232,265 \mathrm{~A}-272,295 \mathrm{~A}-302,365 \mathrm{~A}- \\ & 372,381 \mathrm{~A}-388,419 \mathrm{~A}-426,439 \mathrm{~A}-446 \end{aligned}$
PS. 5	Use appropriate tools strategically.	This standard is covered throughout the program. Representative pages include: SE: $\quad 5-12,21-28,49-56,79-86,95-102,115-122,137-144$, 173-180, 189-196, 213-220, 225-232, 241-248, 257264, 315-322, 345-352, 381-388, 411-418, 447-454 TE: $\quad 5 \mathrm{~A}-12,21 \mathrm{~A}-28,49 \mathrm{~A}-56,79 \mathrm{~A}-86,95 \mathrm{~A}-102,115 \mathrm{~A}-122$, 137A-144, 173A-180, 189A-196, 213A-220, 225A-232, 241A-248, 257A-264, 315A-322, 345A-352, 381A-388, 411A-418, 447A-454

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 8

Standard	Descriptor	Citations
PS. 6	Attend to precision.	This standard is covered throughout the program. Representative pages include: $\begin{array}{ll} \text { SE: } & 5-12,13-20,57-64,79-86,115-122,137-144,145-152, \\ & 173-180,181-188,197-204,233-240,241-248,307- \\ & 314,337-344,353-360,365-372,381-388,411-418, \\ & 455-462 \\ \text { TE: } & \text { 5A-12, 13A-20, 57A-64, 79A-86, 115A-122, 137A-144, } \\ & 145 \mathrm{~A}-152,173-180,181 \mathrm{~A}-188,197 \mathrm{~A}-204,233 \mathrm{~A}-240, \\ & \text { 241A-248, 307A-314, 337A-344, 353A-360, 365A-372, } \\ & \text { 381A-388, 411A-418, 455A-462 } \end{array}$
PS. 7	Look for and make use of structure.	This standard is covered throughout the program. Representative pages include: $\begin{array}{ll} \text { SE: } & 21-28,57-64,79-86,95-102,107-114,137-144,153- \\ & 160,173-180,181-188,197-204,225-232,257-264, \\ & 279-286,315-322,337-344,345-352,365-372,381- \\ & 388,419-426,439-446 \\ \text { TE: } & 21 \mathrm{~A}-28,57 \mathrm{~A}-64,79 \mathrm{~A}-86,95 \mathrm{~A}-102,107 \mathrm{~A}-114,137 \mathrm{~A}- \\ & 144,153 \mathrm{~A}-160,173 \mathrm{~A}-180,181 \mathrm{~A}-188,197 \mathrm{~A}-204,225 \mathrm{~A}- \\ & 232,257 \mathrm{~A}-264,279 \mathrm{~A}-286,315 \mathrm{~A}-322,337 \mathrm{~A}-344,345 \mathrm{~A}- \\ & 352,365 \mathrm{~A}-372,381 \mathrm{~A}-388,419 \mathrm{~A}-426,439 \mathrm{~A}-446 \end{array}$
PS. 8	Look for and express regularity in repeated reasoning.	This standard is covered throughout the program. Representative pages include: SE: $13-20,37-44,57-64,65-72,115-122,137-144,173-$ 180, 189-196, 225-232, 241-248, 307-314, 315-322, 337-344, 345-352, 365-372, 381-388, 403-410, 439-446 TE: $\quad 13 \mathrm{~A}-20,37 \mathrm{~A}-44,57 \mathrm{~A}-64,65 \mathrm{~A}-72,115 \mathrm{~A}-122,137 \mathrm{~A}-$ 144, 173A-180, 189A-196, 225A-232, 241A-248, 307A- 314, 315A-322, 337A-344, 345A-352, 365A-372, 381A- 388, 403A-410, 439A-446

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 8

Standard	Descriptor	Citations
NUMBER SENSE		
8.NS. 1	Give examples of rational and irrational numbers and explain the difference between them. Understand that every number has a decimal equivalent. For rational numbers, show that the decimal equivalent terminates or repeats, and convert a repeating decimal into a rational number.	SE: 337-344 TE: 337A-344
8.NS. 2	Use rational approximations of irrational numbers to compare the size of irrational numbers, plot them approximately on a number line, and estimate the value of expressions involving irrational numbers.	SE: 353-360 TE: 353A-360
8.NS. 3	Given a numeric expression with common rational number bases and integer exponents, apply the properties of exponents to generate equivalent expressions.	SE: 403-410 TE: 403A-410
8.NS. 4	Use square root symbols to represent solutions to equations of the form $\mathrm{x}^{2}=\mathrm{p}$, where p is a positive rational number.	SE: 345-352 TE: 345A-352
COMPUTATION		
8.C. 1	Solve real-world problems with rational numbers by using multiple operations.	$\begin{array}{ll} \hline \text { SE: } & 79-86,87-94,95-102,265-272,381-388,389-396,455- \\ & 462 \\ \text { TE: } & 79 A-86,87 A-94,95 A-102,265 A-272,381 A-388, \\ & 389 A-396,455 A-462 \end{array}$
8.C. 2	Solve real-world and other mathematical problems involving numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Interpret scientific notation that has been generated by technology, such as a scientific calculator, graphing calculator, or excel spreadsheet.	SE: 411-418, 419-426 TE: 411A-418, 419A-426

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 8

Standard	Descriptor	Citations
ALGEBRA AND FUNCTIONS		
8.AF. 1	Solve linear equations and inequalities with rational number coefficients fluently, including those whose solutions require expanding expressions using the distributive property and collecting like terms. Represent real-world problems using linear equations and inequalities in one variable and solve such problems.	$\begin{array}{ll} \hline \text { SE: } & 79-86,87-94,95-102,241-248,249-256,257-264,265- \\ & 272 \\ \text { TE: } & 79 \mathrm{~A}-86,87 \mathrm{~A}-94,95 \mathrm{~A}-102,241 \mathrm{~A}-248,249 \mathrm{~A}-256, \\ & 257 \mathrm{~A}-264,265 \mathrm{~A}-272 \\ & \\ \text { Appendix Lesson: } & \text { A4.1, A4.2, A4.3, A4.4, A4.5, A4.6, A5.1, } \\ & \text { A5.2, A5.3, A5.4, A5.5, A5.6 } \end{array}$
8.AF. 2	Generate linear equations in one variable with one solution, infinitely many solutions, or no solutions. Justify the classification given.	SE: 87-94, 95-102 TE: 87A-94, 95A-102
8.AF. 3	Understand that a function assigns to each x -value (independent variable) exactly one y-value (dependent variable), and that the graph of a function is the set of ordered pairs (x,y).	SE: 173-180 TE: 173A-180 Appendix Lesson: A1.1, A1.2, A1.3, A1.4, A1.5, A4.6
8.AF. 4	Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear, has a maximum or minimum value). Sketch a graph that exhibits the qualitative features of a function that has been verbally described.	SE: 213-220 TE: 213A-220 Appendix Lesson: A3.1, A3.2, A3.3, A3.4, A3.5, A3.6, A3.7, A3.8
8.AF. 5	Interpret the equation $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. Describe similarities and differences between linear and nonlinear functions from tables, graphs, verbal descriptions, and equation	SE: 181-188 TE: 181A-188 Appendix Lesson: A2.1, A2.2, A2.3, A2.4, A2.5, A2.6, A2.7, A2.8

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 8

Standard	Descriptor	Citations
8.AF. 6	Construct a function to model a linear relationship between two quantities given a verbal description, table of values, or graph. Recognize in $y=m x+b$ that m is the slope (rate of change) and b is the y-intercept of the graph, and describe the meaning of each in the context of a problem.	SE: $189-196,197-204,295-302$ TE: $189 A-196,197 A-204,295 A-302$
8.AF. 7	Compare properties of two linear functions given in different forms, such as a table of values, equation, verbal description, and graph (e.g., compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed).	SE: 205-212 TE: 205A-212
8.AF. 8	Understand that solutions to a system of two linear equations correspond to points of intersection of their graphs because points of intersection satisfy both equations simultaneously. Approximate the solution of a system of equations by graphing and interpreting the reasonableness of the approximation.	SE: 225-232, 233-240, 241-248, 249-256, 257-264 TE: 225A-232, 233A-240, 241A-248, 249A-256, 257A-264
GEOMETRY AND MEASUREMENT		
8.GM. 1	Identify, define, and describe attributes of three-dimensional geometric objects (right rectangular prisms, cylinders, cones, spheres, and pyramids). Explore the effects of slicing these objects using appropriate technology and describe the two-dimensional figure that results.	$\begin{aligned} \text { Appendix Lesson: } & \text { A6.1, A6.2, A6.3, A6.4, A6.5, A6.6, A7.1, } \\ & \text { A7.2, A7.3, A7.4, A8.1, A8.2, A8.3, A8.4, } \\ & \text { A8.5, A8.6, A9.1, A9.2, A9.3, A9.4, A9.5, } \\ & \text { A9.6 } \end{aligned}$
8.GM. 2	Solve real-world and other mathematical problems involving volume of cones, spheres, and pyramids and surface area of spheres.	Students do not solve real-world and other mathematical problems involving surface area of spheres. The rest of the standard is covered, however: SE: 439-446, 447-454, 455-462 TE: 439A-446, 447A-454, 455A-462

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 8

Standard	Descriptor	Citations
8.GM. 3	Verify experimentally the properties of rotations, reflections, and translations, including: lines are mapped to lines, and line segments to line segments of the same length; angles are mapped to angles of the same measure; and parallel lines are mapped to parallel lines.	SE: $\quad 5-12,13-20,21-28,29-36$ TE: $\quad 5 \mathrm{~A}-12,13 \mathrm{~A}-20,21 \mathrm{~A}-28,29 \mathrm{~A}-36$
8.GM. 4	Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations. Describe a sequence that exhibits the congruence between two given congruent figures.	$\begin{array}{ll}\text { SE: } & 37-44 \\ \text { TE: } & 37 A-44\end{array}$
8.GM. 5	Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations. Describe a sequence that exhibits the similarity between two given similar figures.	SE: 65-72 TE: 65A-72
8.GM. 6	Explore dilations, translations, rotations, and reflections on two-dimensional figures in the coordinate plane.	SE: $13-20,21-28,29-36,37-44,49-56,57-64$ TE: $\quad 13 \mathrm{~A}-20,21 \mathrm{~A}-28,29 \mathrm{~A}-36,37 \mathrm{~A}-44,49 \mathrm{~A}-56,57 \mathrm{~A}-64$
8.GM. 7	Use inductive reasoning to explain the Pythagorean relationship.	SE: 365-372, 373-380 TE: 365A-372, 373A-380
8.GM. 8	Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and other mathematical problems in two dimensions.	SE: 381-388 TE: 381A-388
8.GM. 9	Apply the Pythagorean Theorem to find the distance between two points in a coordinate plane.	$\begin{array}{ll}\text { SE: } & 389-396 \\ \text { TE: } & 389 A-396\end{array}$

Houghton Mifflin Harcourt Into Math ©2020 correlated to the
Indiana Academic Standards: Mathematics (2020), Grade 8

Standard	Descriptor	Citations
DATA ANALYSIS, STATISTICS, AND PROBABILITY		
8.DSP. 1	Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantitative variables. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.	SE: 279-286 TE: 279A-286
8.DSP. 2	Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and describe the model fit by judging the closeness of the data points to the line.	SE: 287-294 TE: 287A-294
8.DSP. 3	Write and use equations that model linear relationships to make predictions, including interpolation and extrapolation, in real-world situations involving bivariate measurement data. Interpret the slope and y-intercept in context.	SE: 295-302 TE: 295A-302
8.DSP. 4	Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs. Understand and use appropriate terminology to describe independent, dependent, complementary, and mutually exclusive events.	Appendix Lesson: A10.1, A10.2, A10.3, A10.4, A10.5, A10.6
8.DSP. 5	Represent sample spaces and find probabilities of compound events (independent and dependent) using organized lists, tables, and tree diagrams.	Appendix Lesson: A11.1, A11.2, A11.3, A11.4, A11.5, A11.6
8.DSP. 6	For events with a large number of outcomes, understand the use of the multiplication counting principle. Develop the multiplication counting principle and apply it to situations with a large number of outcomes.	Appendix Lesson: A12.1, A12.2, A12.3, A12.4

Houghton Mifflin Harcourt

Into Math, Advanced 1 © 2020
correlated to the
Indiana Mathematics Standards (2014)
Grades 6/7

Standard	Description	Citations
Process Standards for Mathematics		
PS. 1	Make sense of problems and persevere in solving them.	This standard is covered throughout the program. Representative lessons include: SE: 27-34, 67-74, 103-108, 121-128, 187-194, 237-244, 285290, 309-316, 351-358, 369-376, 411-418, 439-444, 461466, 501-506, 519-524, 551-556, 585-590 TE: $27 \mathrm{~A}-34,67 \mathrm{~A}-74,103 \mathrm{~A}-108,121 \mathrm{~A}-128,187 \mathrm{~A}-194,237 \mathrm{~A}-$ 244, 285A-290, 309A-316, 351A-358, 369A-376, 411A$418,439 \mathrm{~A}-444,461 \mathrm{~A}-466,501 \mathrm{~A}-506,519 \mathrm{~A}-524,551 \mathrm{~A}-$ 556, 585A-590
PS. 2	Reason abstractly and quantitatively.	This standard is covered throughout the program. Representative lessons include: SE: 5-12, 45-52, 91-96, 113-120, 129-136, 141-148, 149-156, 201-206, 295-302, 329-336, 369-376, 389-394, 431-438, 449-454, 493-500, 519-524, 537-544, 563-568, 615-620 TE: $5 \mathrm{~A}-12,45 \mathrm{~A}-52,91 \mathrm{~A}-96,113 \mathrm{~A}-120,129 \mathrm{~A}-136,141 \mathrm{~A}-148$, 149A-156, 201A-206, 295A-302, 329A-336, 369A-376, 389A-394, 431A-438, 449A-454, 493A-500, 519A-524, 537A-544, 563A-568, 615A-620

Houghton Mifflin Harcourt Into Math, Advanced 1 © 2020 correlated to the
Indiana Mathematics Standards (2014), Grades 6/7

Standard	Description	Citations
PS. 3	Construct viable arguments and critique the reasoning of others.	This standard is covered throughout the program. Representative lessons include: SE: $\quad 5-12,45-52,91-96,97-102,121-128,157-164,207-214$, 249-254, 309-316, 323-328, 369-376, 403-410, 423-430, 467-472, 485-492, 511-518, 563-568, 601-606, 627-632 TE: 5A-12, 45A-52, 91A-96, 97A-102, 121A-128, 157A-164, 207A-214, 249A-254, 309A-316, 323A-328, 369A-376, 403A-410, 423A-430, 467A-472, 485A-492, 511A-518, 563A-568, 601A-606, 627A-632
PS. 4	Model with mathematics.	This standard is covered throughout the program. Representative lessons include: $\begin{array}{ll} \text { SE: } & 13-20,27-34,45-52,85-90,129-136,157-164,215-220, \\ & 249-254,263-270,295-302,303-308,363-368,395-402, \\ & 439-444,455-460,493-500,525-532,545-550,577-584, \\ & 621-626 \\ \text { TE: } & 13 \mathrm{~A}-20,27 \mathrm{~A}-34,45 \mathrm{~A}-52,85 \mathrm{~A}-90,129 \mathrm{~A}-136,157 \mathrm{~A}-164, \\ & 215 \mathrm{~A}-220,249 \mathrm{~A}-254,263 \mathrm{~A}-270,295 \mathrm{~A}-302,303 \mathrm{~A}-308, \\ & 363 \mathrm{~A}-368,395 \mathrm{~A}-402,439 \mathrm{~A}-444,455 \mathrm{~A}-460,493 \mathrm{~A}-500, \\ & 525 \mathrm{~A}-532,545 \mathrm{~A}-550,577 \mathrm{~A}-584,621 \mathrm{~A}-626 \end{array}$
PS. 5	Use appropriate tools strategically.	This standard is covered throughout the program. Representative lessons include: SE: $13-20,67-74,97-102,113-120,121-128,165-172,215-$ 220, 263-270, 295-302, 323-328, 363-368, 411-418, 439444, 449-454, 493-500, 545-550, 585-590 TE: $\quad 13 \mathrm{~A}-20,67 \mathrm{~A}-74,97 \mathrm{~A}-102,113 \mathrm{~A}-120,121 \mathrm{~A}-128,165 \mathrm{~A}-$ 172, 215A-220, 263A-270, 295A-302, 323A-328, 363A368, 411A-418, 439A-444, 449A-454, 493A-500, 545A550, 585A-590

Houghton Mifflin Harcourt Into Math, Advanced 1 © 2020 correlated to the
Indiana Mathematics Standards (2014), Grades 6/7

Standard	Description	Citations
PS. 6	Attend to precision.	This standard is covered throughout the program. Representative lessons include: SE: 21-26, 53-60, 85-90, 129-136, 149-156, 215-220, 249-254, 309-316, 323-328, 363-368, 403-410, 423-430, 449-454, 525-532, 545-550, 607-614, 627-632 TE: $21 \mathrm{~A}-26,53 \mathrm{~A}-60,85 \mathrm{~A}-90,129 \mathrm{~A}-136,149 \mathrm{~A}-156,215 \mathrm{~A}-$ 220, 249A-254, 309A-316, 323A-328, 363A-368, 403A410, 423A-430, 449A-454, 525A-532, 545A-550, 607A614, 627A-632
PS. 7	Look for and make use of structure.	This standard is covered throughout the program. Representative lessons include: SE: 5-12, 53-60, 79-84, 141-148, 207-214, 271-276, 303-308, 337-342, 363-368, 395-402, 431-438, 449-454, 485-492, 511-518, 545-550, 569-576, 601-606 TE: $\quad 5 \mathrm{~A}-12,53 \mathrm{~A}-60,79 \mathrm{~A}-84,141 \mathrm{~A}-148,207 \mathrm{~A}-214,271 \mathrm{~A}-276$, 303A-308, 337A-342, 363A-368, 395A-402, 431A-438, 449A-454, 485A-492, 511A-518, 545A-550, 569A-576, 601A-606
PS. 8	Look for and express regularity in repeated reasoning. regularity in repeated reasoning.	This standard is covered throughout the program. Representative lessons include: SE: 27-34, 61-66, 85-90, 129-136, 165-172, 201-206, 207-214, 271-276, 303-308, 337-342, 377-384, 395-402, 439-444, 467-472, 485-492, 525-532, 569-576, 615-620 TE: 27A-34, 61A-66, 85A-90, 129A-136, 165A-172, 201A206, 207A-214, 271A-276, 303A-308, 337A-342, 377A384, 395A-402, 439A-444, 467A-472, 485A-492, 525A532, 569A-576, 615A-620

Houghton Mifflin Harcourt Into Math, Advanced 1 © 2020 correlated to the
Indiana Mathematics Standards (2014), Grades 6/7

Standard	Description	Citations
Grade 6		
Number Sense		
6.NS. 1	Understand that positive and negative numbers are used to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge). Use positive and negative numbers to represent and compare quantities in real-world contexts, explaining the meaning of 0 in each situation.	SE: 5-12, 13-20 TE: 5A-12, 13A-20
6.NS. 2	Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself (e.g., $-(-3)=3$), and that 0 is its own opposite.	$\begin{array}{ll} \text { SE: } & 5-12 \\ \text { TE: } & 5 \mathrm{~A}-12 \end{array}$
6.NS. 3	Compare and order rational numbers and plot them on a number line. Write, interpret, and explain statements of order for rational numbers in real-world contexts.	SE: 13-20, 27-34, 35-40 TE: 13A-20, 27A-34, 35A-40
6.NS. 4	Understand that the absolute value of a number is the distance from zero on a number line. Find the absolute value of real numbers and know that the distance between two numbers on the number line is the absolute value of their difference. Interpret absolute value as magnitude for a positive or negative quantity in a real-world situation.	SE: 5-12, 21-26 TE: 5A-12, 21A-26
6.NS. 7	Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12 . Use the distributive property to express a sum of two whole numbers from 1 to 100 , with a common factor as a multiple of a sum of two whole numbers with no common factor.	SE: 27-34, 35-40 TE: 27A-34, 35A-40

Houghton Mifflin Harcourt Into Math, Advanced 1 © 2020 correlated to the
Indiana Mathematics Standards (2014), Grades 6/7

Standard	Description	Citations
6.NS. 8	Interpret, model, and use ratios to show the relative sizes of two quantities. Describe how a ratio shows the relationship between two quantities. Use the following notations: $\mathrm{a} / \mathrm{b}, \mathrm{a}$ to b, a:b.	$\begin{array}{ll} \text { SE: } & 323-328 \\ \text { TE: } & 323 A-328 \end{array}$
6.NS. 9	Understand the concept of a unit rate and use terms related to rate in the context of a ratio relationship.	$\begin{array}{ll} \text { SE: } & 343-350 \\ \text { TE: } & 343 A-350 \end{array}$
6.NS. 10	Use reasoning involving rates and ratios to model real-world and other mathematical problems (e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations).	SE: 323-328, 329-336, 337-342, 343-350, 351-358 TE: 32A3-328, 329A-336, 337A-342, 343A-350, 351A-358
Computation		
6.C. 1	Divide multi-digit whole numbers fluently using a standard algorithmic approach.	$\begin{array}{ll} \text { SE: } & 91-96 \\ \text { TE: } & 91 \mathrm{~A}-96 \end{array}$
6.C. 2	Compute with positive fractions and positive decimals fluently using a standard algorithmic approach.	```SE: 45-52 53-60, 61-66, 67-74, 79-84, 85-90, 97-102, 103- 108 TE: 45A-52 53A-60, 61A-66, 67A-74, 79A-84, 85A-90, 97A- 102, 103-108```
6.C. 3	Solve real-world problems with positive fractions and decimals by using one or two operations.	```SE: 45-52 53-60, 61-66, 67-74, 79-84, 85-90, 97-102, 103- 108 TE: \(45 \mathrm{~A}-5253 \mathrm{~A}-60,61 \mathrm{~A}-66,67 \mathrm{~A}-74,79 \mathrm{~A}-84,85 \mathrm{~A}-90,97 \mathrm{~A}-\) 102, 103A-108```
6.C. 4	Compute quotients of positive fractions and solve real-world problems involving division of fractions by fractions. Use a visual fraction model and/or equation to represent these calculations.	SE: 45-52 53-60, 61-66, 67-74 TE: 45A-52 53A-60, 61A-66, 67A-74
6.C. 5	Evaluate positive rational numbers with whole number exponents.	SE: 201-206, 207-214 TE: 201A-206, 207A-214

Houghton Mifflin Harcourt Into Math, Advanced 1 © 2020 correlated to the Indiana Mathematics Standards (2014), Grades 6/7

Standard	Description	Citations
6.C. 6	Apply the order of operations and properties of operations (identity, inverse, commutative properties of addition and multiplication, associative properties of addition and multiplication, and distributive property) to evaluate numerical expressions with nonnegative rational numbers, including those using grouping symbols, such as parentheses, and involving whole number exponents.	SE: 229-236, 237-244, 255-262, 263-270 TE: 229A-236, 237A-244, 255A-262, 263A-270
Algebra and Functions		
6.AF. 1	Evaluate expressions for specific values of their variables, including expressions with whole-number exponents and those that arise from formulas used in geometry and other real-world problems.	```SE: 221-228, 511-518, 519-524, 525-532, 545-550, 551-556 TE: 221A-228, 511A-518, 519A-524, 525A-532, 545A-550, 551A-556```
6.AF. 2	Apply the properties of operations (e.g., identity, inverse, commutative, associative, distributive properties) to create equivalent linear expressions and to justify whether two linear expressions are equivalent when the two expressions name the same number regardless of which value is substituted into them.	$\begin{array}{ll} \hline \text { SE: } & 229-236 \\ \text { TE: } & 229 A-236 \end{array}$
6.AF. 3	Define and use multiple variables when writing expressions to represent real-world and other mathematical problems, and evaluate them for given values.	SE: 215-220, 221-228, 229-236 TE: 215A-220, 221A-228, 229A-236
6.AF. 4	Understand that solving an equation or inequality is the process of answering the following question: Which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.	SE: 249-254, 277-284 TE: 249A-254, 277A-284
6.AF. 5	Solve equations of the form $\mathrm{x}+\mathrm{p}=\mathrm{q}, \mathrm{x}-\mathrm{p}=\mathrm{q}, \mathrm{px}=\mathrm{q}$, and $\mathrm{x} / \mathrm{p}=\mathrm{q}$ fluently for cases in which p, q and x are all nonnegative rational numbers. Represent real-world problems using equations of these forms and solve such problems.	SE: 249-254, 255-262, 263-270, 271-276 TE: 249A-254, 255A-262, 263A-270, 271A-276

Houghton Mifflin Harcourt Into Math, Advanced 1 © 2020 correlated to the
Indiana Mathematics Standards (2014), Grades 6/7

Standard	Description	Citations
6.AF. 6	Write an inequality of the form $\mathrm{x}>\mathrm{c}, \mathrm{x} \geq \mathrm{c}, \mathrm{x}<\mathrm{c}$, or $\mathrm{x} \leq \mathrm{c}$, where c is a rational number, to represent a constraint or condition in a real-world or other mathematical problem. Recognize inequalities have infinitely many solutions and represent solutions on a number line diagram.	$\begin{array}{ll} \text { SE: } & 277-284 \\ \text { TE: } & 277 \mathrm{~A}-284 \end{array}$
$6 . A F .7$	Understand that signs of numbers in ordered pairs indicate the quadrant containing the point. Identify rules or patterns in the signs as they relate to the quadrants. Graph points with rational number coordinates on a coordinate plane.	$\begin{array}{ll}\text { SE: } & 485-492 \\ \text { TE: } & 485 A-492\end{array}$
6.AF. 8	Solve real-world and other mathematical problems by graphing points with rational number coordinates on a coordinate plane. Include the use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.	SE: 485-492, 493-500, 501-506 TE: 485A-492, 493A-500, 501A-506
6.AF. 9	Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane.	SE: 329-336, 337-342 TE: 329A-336, 337A-342
6.AF. 10	Use variables to represent two quantities in a proportional relationship in a real-world problem; write an equation to express one quantity, the dependent variable, in terms of the other quantity, the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation.	SE: 295-302, 303-308, 309-316 TE: 295A-302, 303A-308, 309A-316

Houghton Mifflin Harcourt Into Math, Advanced 1 © 2020 correlated to the Indiana Mathematics Standards (2014), Grades 6/7

Standard	Description	Citations
Geometry		
6.GM. 1	Convert between measurement systems (English to metric and metric to English) given conversion factors, and use these conversions in solving real-world problems.	$\begin{array}{ll} \hline \text { SE: } & 377-384 \\ \text { TE: } & 387 \mathrm{~A}-384 \end{array}$
6.GM. 3	Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate; apply these techniques to solve realworld and other mathematical problems.	$\begin{array}{ll} \hline \text { SE: } & 493-500,501-506 \\ \text { TE: } & 493 \mathrm{~A}-500,501 \mathrm{~A}-506 \end{array}$
6.GM. 4	Find the area of complex shapes composed of polygons by composing or decomposing into simple shapes; apply this technique to solve real-world and other mathematical problems.	$\begin{array}{ll} \text { SE: } & 525-532 \\ \text { TE: } & 525 \mathrm{~A}-532 \end{array}$
6.GM. 5	Find the volume of a right rectangular prism with fractional edge lengths using unit cubes of the appropriate unit fraction edge lengths (e.g., using technology or concrete materials), and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $\mathrm{V}=\mathrm{l}$ wh and $\mathrm{V}=\mathrm{Bh}$ to find volumes of right rectangular prisms with fractional edge lengths to solve realworld and other mathematical problems.	$\begin{array}{ll} \hline \text { SE: } & 545-550,551-556 \\ \text { TE: } & 545 \mathrm{~A}-550,551 \mathrm{~A}-556 \end{array}$
6.GM.6	Construct right rectangular prisms from nets and use the nets to compute the surface area of prisms; apply this technique to solve real-world and other mathematical problems.	SE: $537-544$ TE: $537 \mathrm{~A}-544$
Data Analysis and Statistics		
6.DS. 1	Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for the variability in the answers. Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.	SE: 563-568, 585-590, 591-596, 621-626, 627-632 TE: 563A-568, 585A-590, 591A-596, 621A-626, 627A-632

Houghton Mifflin Harcourt Into Math, Advanced 1 © 2020 correlated to the
Indiana Mathematics Standards (2014), Grades 6/7

Standard	Description	Citations
6.DS. 2	Select, create, and interpret graphical representations of numerical data, including line plots, histograms, and box plots.	SE: 569-576, 577-584, 601-606, 607-614, 627-632 TE: 569A-576, 577A-584, 601A-606, 607A-614, 627A-632
6.DS. 3	Formulate statistical questions; collect and organize the data (e.g., using technology); display and interpret the data with graphical representations (e.g., using technology).	SE: 569-576, 577-584, 601-606, 607-614, 627-632 TE: 569A-576, 577A-584, 601A-606, 607A-614, 627A-632
6.DS. 4	Summarize numerical data sets in relation to their context in multiple ways, such as: - report the number of observations - describe the nature of the attribute under investigation, including how it was measured and its units of measurement - determine quantitative measures of center (mean and/or median) and spread (range and interquartile range) - describe any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered - relate the choice of measures of center and spread to the shape of the data distribution and the context in which the data were gathered	```SE: 563-568, 569-576, 577-584, 585-590, 591-596, 601-606, 607-614, 615-620, 621-626, 627-632 TE: 563A-568, 569A-576, 577A-584, 585A-590, 591A-596, 601A-606, 607A-614, 615A-620, 621A-626, 627A-632```
Grade 7 Standards		
Computation		
7.C. 1	Understand $\mathrm{p}+\mathrm{q}$ as the number located a distance $\|\mathrm{q}\|$ from p, in the positive or negative direction, depending on whether q is positive or negative. Show on a number line that a number and its opposite have a sum of 0 (are additive inverses). Find and interpret sums of rational numbers in real-world contexts.	```SE: 113-120, 121-128, 129-136, 141-148, 179-186, 187-194 TE: 113A-120, 121A-128, 129A-136, 141A-148, 179A-186, 187A-194```

Houghton Mifflin Harcourt Into Math, Advanced 1 © 2020 correlated to the Indiana Mathematics Standards (2014), Grades 6/7

Standard	Description	Citations
7.C. 2	Understand subtraction of rational numbers as adding the additive inverse, $\mathrm{p}-\mathrm{q}=\mathrm{p}+(-\mathrm{q})$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts.	$\begin{array}{ll} \text { SE: } & 113-120,121-128,129-136,149-156,179-186,187-194 \\ \text { TE: } & 113 A-120,121 \mathrm{~A}-128,129 \mathrm{~A}-136,149 \mathrm{~A}-156,179 \mathrm{~A}-186, \\ & 187 \mathrm{~A}-194 \end{array}$
7.C. 3	Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1)=$ 1 and the rules for multiplying signed numbers.	SE: 157-164, 173-178, 179-186, 187-194 TE: 157A-164, 173A-178, 179A-186, 187A-194
7.C. 4	Understand that integers can be divided, provided that the divisor is not zero. Understand that if p and q are integers, then $-(p / q)=(-p) / q=p /(-q)$.	SE: $\quad 157-164,165-172,173-178,179-186,187-194$ TE: 157A-164, 165A-172, 173A-178, 179A-186, 187A-194
7.C. 5	Compute unit rates associated with ratios of fractions, including ratios of lengths, areas, and other quantities measured in like or different units.	SE: 343-350, 511-518 TE: 343A-350, 511A-518
7.C. 6	Use proportional relationships to solve ratio and percent problems with multiple operations (e.g. simple interest, tax, markups, markdowns, gratuities, conversions within and across measurement systems, and percent increase and decrease).	$\begin{array}{ll} \hline \text { SE: } & 351-358,369-376,377-384,431-438,439-444,449-454, \\ & 455-460,461-466,467-472,473-478 \\ \text { TE: } & 351 \mathrm{~A}-358,369 \mathrm{~A}-376,377 \mathrm{~A}-384,431 \mathrm{~A}-438,439 \mathrm{~A}-444, \\ & 449 \mathrm{~A}-454,455 \mathrm{~A}-460,461 \mathrm{~A}-466,467 \mathrm{~A}-472,473 \mathrm{~A}-478 \end{array}$
7.C. 7	Compute with rational numbers fluently using a standard algorithmic approach.	$\begin{array}{ll} \hline \text { SE: } & 141-148,149-156,157-164,173-178,179-186,187-194 \\ \text { TE: } & 141 \mathrm{~A}-148,149 \mathrm{~A}-156,157 \mathrm{~A}-164,173 \mathrm{~A}-178,179 \mathrm{~A}-186, \\ & 187 \mathrm{~A}-194 \end{array}$
7.C. 8	Solve real-world problems with rational numbers by using one or two operations.	$\begin{array}{ll}\text { SE: } & 173-178,179-186,187-194 \\ \text { TE: } & 173 A-178,179 A-186,187 A-194\end{array}$

Houghton Mifflin Harcourt Into Math, Advanced 1 © 2020 correlated to the Indiana Mathematics Standards (2014), Grades 6/7

Standard	Description	Citations
Algebra and Functions		
7.AF. 1	Apply the properties of operations (e.g., identity, inverse, commutative, associative, distributive properties) to create equivalent linear expressions, including situations that involve factoring out a common number (e.g., given $2 \mathrm{x}-10$, create an equivalent expression $2(x-5)$). Justify each step in the process.	SE: 207-214, 215-216, 221-228, 229-236, 237-244 TE: 207A-214, 215A-216, 221A-228, 229A-236, 237A-244
7.AF. 2	Solve equations of the form $p x+q=r$ and $p(x+q)=r$ fluently, where p, q, and r are specific rational numbers. Represent real-world problems using equations of these forms and solve such problems.	SE: 255-262, 263-270, 271-276, 285-290 TE: 255A-262, 263A-270, 271A-276, 285A-290
7.AF. 3	Solve inequalities of the form $\mathrm{px}+\mathrm{q}(>$ or $\geq) \mathrm{r}$ or $\mathrm{px}+\mathrm{q}(<$ or \leq) r , where p, q, and r are specific rational numbers. Represent real-world problems using inequalities of these forms and solve such problems. Graph the solution set of the inequality and interpret it in the context of the problem.	SE: 277-284 TE: 277A-284
7.AF. 6	Decide whether two quantities are in a proportional relationship (e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin).	SE: 395-402, 403-410 TE: 395A-402, 403A-410
7.AF. 7	Identify the unit rate or constant of proportionality in tables, graphs, equations, and verbal descriptions of proportional relationships.	SE: 389-394, 395-402, 403-410, 411-418 TE: 389A-394, 395A-402, 403A-410, 411A-418
7.AF. 8	Explain what the coordinates of a point on the graph of a proportional relationship mean in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$, where r is the unit rate.	SE: 403-410, 411-418 TE: 403A-410, 411A-418

Houghton Mifflin Harcourt Into Math, Advanced 1 © 2020 correlated to the
Indiana Mathematics Standards (2014), Grades 6/7

Standard	Description	Citations
Geometry and Measurement		
7.GM. 7	Construct nets for right rectangular prisms and cylinders and use the nets to compute the surface area; apply this technique to solve real-world and other mathematical problems.	SE: 537-544 TE: 537A-544
Data Analysis, Statistics and Probability		
7.DSP. 1	Understand that statistics can be used to gain information about a population by examining a sample of the population. Understand that conclusions and generalizations about a population from a sample are valid only if the sample is representative of that population and that random sampling tends to produce representative samples and support valid inferences.	$\begin{array}{ll}\text { SE: } & 563-568 \\ \text { TE: } & 563 A-568\end{array}$
7.DSP. 2	Use data from a random sample to draw inferences about a population. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions.	$\begin{array}{ll} \text { SE: } & 585-590,591-596,601-606,607-614,615-620,621-626, \\ & 627-632 \\ \text { TE: } & 585 A-590,591 A-596,601 A-606,607 A-614,615 A-620, \\ & 621 A-626,627 A-632 \end{array}$
7.DSP. 3	Find, use, and interpret measures of center (mean and median) and measures of spread (range, interquartile range, and mean absolute deviation) for numerical data from random samples to draw comparative inferences about two populations.	$\begin{array}{ll} \hline \text { SE: } & 585-590,591-596,601-606,607-614,615-620,621-626, \\ & 627-632 \\ \text { TE: } & 585 \mathrm{~A}-590,591 \mathrm{~A}-596,601 \mathrm{~A}-606,607 \mathrm{~A}-614,615 \mathrm{~A}-620, \\ & 621 \mathrm{~A}-626,627 \mathrm{~A}-632 \end{array}$
7.DSP. 4	Make observations about the degree of visual overlap of two numerical data distributions represented in line plots or box plots. Describe how data, particularly outliers, added to a data set may affect the mean and/or median.	```SE: 569-576, 577-584, 585-590, 591-596, 601-606, 607-614, 615-620, 621-626, 627-632 TE: 569A-576, 577A-584, 585A-590, 591A-596, 601A-606, 607A-614, 615A-620, 621A-626, 627A-632```

Houghton Mifflin Harcourt

Into Math, Accelerated 7 © 2020
correlated to the
Indiana Mathematics Standards (2014)
Grades 7/8

Standard	Description	Citations
Process Standards for Mathematics		
PS. 1	Make sense of problems and persevere in solving them.	This standard is covered throughout the program. Representative pages include: SE: $\quad 5-10,29-36,87-94,125-132,149-154,201-208,253-258$, 301-308, 363-370, 415-420, 471-478, 503-508, 531-536, 557-562, 605-610, 627-632, 645-652, 653-658, 659-664 TE: 5A-10, 29A-36, 87A-94, 125A-132, 149A-154, 201A-208, 253A-258, 301A-308, 363A-370, 415A-420, 471A-478, 503A-508, 531A-536, 557A-562, 605A-610, 627A-632, 645A-652, 653A-658, 659A-664
PS. 2	Reason abstractly and quantitatively.	This standard is covered throughout the program. Representative pages include: SE: 11-18, 55-60, 87-94, 149-154, 201-208, 241-246, 325-332, 371-378, 401-408, 463-470, 479-485, 497-502, 545-550, 557-562, 571-576, 593-598, 605-610, 611-618, 619-626, 637-644, 645-652, 653-658 TE: 11A-18, 55A-60, 87A-94, 149A-154, 201A-208, 241A246, 325AA-332, 371-378, 401A-408, 463A-470, 479A485, 497A-502, 545A-550, 557A-562, 571A-576, 593A598, 605A-610, 611A-618, 619A-626, 637A-644, 645A652, 653A-658

Houghton Mifflin Harcourt Into Math, Accelerated 7 © 2020 correlated to the
Indiana Mathematics Standards (2014), Grades 7/8

Standard	Description	Citations
PS. 3	Construct viable arguments and critique the reasoning of others.	This standard is covered throughout the program. Representative pages include: SE: 27-34, 97-104, 133-140, 201-208, 227-234, 283-290, 341- 348, 383-389, 453-459, 479-484, 497-502, 537-544, 557- 562, 571-576, 581-586, 587-592, 611-618, 619-626, 653- 658 TE: 27A-34, 97A-104, 133A-140, 201A-208, 227A-234, 283A- 290, 341A-348, 383A-389, 453A-459, 479A-484, 497A- 502, 537A-544, 557A-562, 571A-576, 581A-586, 587A- 592, 611A-618, 619A-626, 653A-658
PS. 4	Model with mathematics.	This standard is covered throughout the program. Representative pages include: SE: $11-18,27-34,61-66,117-124,159-167,189-194,227-234$, 235-240, 235-240, 241-246, 259-266, 275-282, 363-370, 389-394, 491-498, 525-540, 537-544, 619-626, 653-658 TE: $11 \mathrm{~A}-18,27 \mathrm{~A}-34,61 \mathrm{~A}-66,117 \mathrm{~A}-124,159 \mathrm{~A}-167,189 \mathrm{~A}-$ 194, 227A-234, 235A-240, 235A-240, 241A-246, 259A266, 275A-282, 363A-370, 389A-394, 491A-498, 525A540, 537A-544, 619A-626, 653A-658
PS. 5	Use appropriate tools strategically.	This standard is covered throughout the program. Representative pages include: SE: 27-34, 43-50, 91-96, 97-104, 133-140, 167-174, 215-222, 253-258, 295-300, 309-314, 315-320, 325-332, 333-340, 401-408, 525-530, 611-618, 619-626, 659-664 TE: 27A-34, 43A-50, 91A-96, 97A-104, 133A-140, 167A-174, 215A-222, 253A-258, 295A-300, 309A-314, 315A-320, 325A-332, 333A-340, 401A-408, 525A-530, 611A-618, 619A-626, 659A-664

Houghton Mifflin Harcourt Into Math, Accelerated 7 © 2020 correlated to the
Indiana Mathematics Standards (2014), Grades 7/8

Standard	Description	Citations
PS. 6	Attend to precision.	This standard is covered throughout the program. Representative pages include: SE: 19-26, 61-67, 105-112, 141-148, 159-167, 195-201, 215- 222, 253-258, 259-266, 283-290, 341-348, 395-400, 445- 452, 453-458, 479-484, 545-550, 563-570, 571-577, 593599, 659-664 TE: 19A-26, 61A-67, 105A-112, 141A-148, 159A-167, 195A- 201, 215A-222, 253A-258, 259A-266, 283A-290, 341A- 348, 395A-400, 445A-452, 453A-458, 479A-484, 545A- 550, 563A-570, 571A-577, 593A-599, 659A-664
PS. 7	Look for and make use of structure.	This standard is covered throughout the program. Representative pages include: SE: 55-60, 79-84, 141-148, 201-208, 215-222, 295-300, 325332, 333-340, 371-378, 453-458, 491-496, 525-530, 531536, 593-598, 637-644, 645-652, 653-658 TE: 55A-60, 79A-84, 141A-148, 201A-208, 215A-222, 295A300, 325A-332, 333A-340, 371A-378, 453A-458, 491A496, 525A-530, 531A-536, 593A-598, 637A-644, 645A652, 653A-658
PS. 8	Look for and express regularity in repeated reasoning. regularity in repeated reasoning.	This standard is covered throughout the program. Representative pages include: SE: $11-18,27-34,73-78,105-112,125-132,141-148,167-174$, 227-234, 309-314, 333-340, 341-348, 421-428, 429-434, 463-470, 513-518, 519-525, 545-550, 563-570, 653-658 TE: $11 \mathrm{~A}-18,27 \mathrm{~A}-34,73 \mathrm{~A}-78,105 \mathrm{~A}-112,125 \mathrm{~A}-132,141 \mathrm{~A}-$ 148, 167A-174, 227A-234, 309A-314, 333A-340, 341A- 348, 421A-428, 429A-434, 463A-470, 513A-518, 519A- 525, 545A-550, 563A-570, 653A-658

Houghton Mifflin Harcourt Into Math, Accelerated 7 © 2020 correlated to the
Indiana Mathematics Standards (2014), Grades 7/8

Standard	Description	Citations
Grade 7 Standards		
Number Sense		
7.NS. 2	Understand the inverse relationship between squaring and finding the square root of a perfect square whole number. Find square roots of perfect square whole numbers.	$\begin{array}{ll} \text { SE: } & 421-428 \\ \text { TE: } & 421 \mathrm{~A}-428 \end{array}$
7.NS. 3	Know there are rational and irrational numbers. Identify, compare, and order rational and common irrational numbers $(\sqrt{ } 2, \sqrt{ } 3, \sqrt{ } 5, \Pi)$ and plot them on a number line.	SE: 415-420, 429-434 TE: 415A-420, 429A-434
Computation		
7.C. 1	Understand $\mathrm{p}+\mathrm{q}$ as the number located a distance $\|\mathrm{q}\|$ from p, in the positive or negative direction, depending on whether q is positive or negative. Show on a number line that a number and its opposite have a sum of 0 (are additive inverses). Find and interpret sums of rational numbers in real-world contexts.	SE: 91-96, 97-104, 105-112, 117-124 TE: 91A-96, 97A-104, 105A-112, 117A-124
7.C. 2	Understand subtraction of rational numbers as adding the additive inverse, $\mathrm{p}-\mathrm{q}=\mathrm{p}+(-\mathrm{q})$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts.	SE: 91-96, 97-104, 105-112, 125-132 TE: 91A-96, 97A-104, 105A-112, 125A-132
7.C. 3	Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1)=$ 1 and the rules for multiplying signed numbers.	SE: 133-140, 149-154 TE: 133A-140, 149A-154
7.C. 4	Understand that integers can be divided, provided that the divisor is not zero. Understand that if p and q are integers, then $-(p / q)=(-p) / q=p /(-q)$.	SE: 133-140, 141-148, 149-154 TE: 133A-140, 141A-148, 149A-154

Houghton Mifflin Harcourt Into Math, Accelerated 7 © 2020 correlated to the
Indiana Mathematics Standards (2014), Grades 7/8

Standard	Description	Citations
7.C. 5	Compute unit rates associated with ratios of fractions, including ratios of lengths, areas, and other quantities measured in like or different units.	SE: 19-26, 27-34, 35-42 TE: 19A-26, 27A-34, 35A-42
7.C.6	Use proportional relationships to solve ratio and percent problems with multiple operations (e.g. simple interest, tax, markups, markdowns, gratuities, conversions within and across measurement systems, and percent increase and decrease).	SE: 35-42, 43-50, 55-60, 61-66, 67-72, 73-78, 79-84 TE: 35A-42, 43A-50, 55A-60, 61A-66, 67A-72, 73A-78, 79A- 84
7.C. 7	Compute with rational numbers fluently using a standard algorithmic approach.	$\begin{array}{ll} \hline \text { SE: } & 117-124,125-132,133-140,149-154,159-166,167-174, \\ & 175-182 \\ \text { TE: } & 117 \mathrm{~A}-124,125 \mathrm{~A}-132,133 \mathrm{~A}-140,149 \mathrm{~A}-154,159 \mathrm{~A}-166, \\ & 167 \mathrm{~A}-174,175 \mathrm{~A}-182 \end{array}$
7.C. 8	Solve real-world problems with rational numbers by using one or two operations.	$\begin{aligned} \hline \text { SE: } & 91-96,97-104,105-112,117-124,125-132,133-140,149- \\ & 154,159-166,167-174,175-182 \\ \text { TE: } & 91 \mathrm{~A}-96,97 \mathrm{~A}-104,105 \mathrm{~A}-112,117 \mathrm{~A}-124,125 \mathrm{~A}-132,133 \mathrm{~A}- \\ & 140,149 \mathrm{~A}-154,159 \mathrm{~A}-166,167 \mathrm{~A}-174,175 \mathrm{~A}-182 \end{aligned}$
Algebra and Functions		
7.AF. 1	Apply the properties of operations (e.g., identity, inverse, commutative, associative, distributive properties) to create equivalent linear expressions, including situations that involve factoring out a common number (e.g., given $2 x-10$, create an equivalent expression $2(x-5)$). Justify each step in the process.	SE: 195-200, 201-208, 209-214, 215-222 TE: 195A-200, 201A-208, 209A-214, 215A-222
7.AF. 2	Solve equations of the form $p x+q=r$ and $p(x+q)=r$ fluently, where p, q, and r are specific rational numbers. Represent real-world problems using equations of these forms and solve such problems.	SE: 195-200, 201-208, 209-214, 215-222 TE: 195A-200, 201A-208, 209A-214, 215A-222

Houghton Mifflin Harcourt Into Math, Accelerated 7 © 2020 correlated to the
Indiana Mathematics Standards (2014), Grades 7/8

Standard	Description	Citations
7.AF. 3	Solve inequalities of the form $\mathrm{px}+\mathrm{q}(>$ or $\geq) \mathrm{r}$ or $\mathrm{px}+\mathrm{q}(<$ or $\leq) \mathrm{r}$, where p, q, and r are specific rational numbers. Represent real-world problems using inequalities of these forms and solve such problems. Graph the solution set of the inequality and interpret it in the context of the problem.	SE: 227-234, 235-240, 241-246 TE: 227A-234, 235A-240, 241A-246
7.AF. 4	Define slope as vertical change for each unit of horizontal change and recognize that a constant rate of change or constant slope describes a linear function. Identify and describe situations with constant or varying rates of change.	$\begin{array}{ll}\text { SE: } & 383-388,401-408 \\ \text { TE: } & 383 A-388, ~ 401 A-408\end{array}$
7.AF. 5	Graph a line given its slope and a point on the line. Find the slope of a line given its graph.	SE: 389-394, 395-400 TE: 389A-394, 395A-400
7.AF. 6	Decide whether two quantities are in a proportional relationship (e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin).	SE: 383-388, 389-394, 395-400, 401-408 TE: 383A-388, 389A-394, 395A-400, 401A-408
7.AF. 7	Identify the unit rate or constant of proportionality in tables, graphs, equations, and verbal descriptions of proportional relationships.	SE: $\quad 383-388,389-394,395-400$ TE: $\quad 383 A-388,389 A-394,395 A-400$
7.AF. 8	Explain what the coordinates of a point on the graph of a proportional relationship mean in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$, where r is the unit rate.	SE: $389-394,395-400,401-408$ TE: $389 A-394,395 A-400, ~ 401 A-408$
7.AF. 9	Represent real-world and other mathematical situations that involve proportional relationships. Write equations and draw graphs to represent these proportional relationships. Recognize that these situations are described by a linear function in the form $\mathrm{y}=\mathrm{mx}$, where the unit rate, m , is the slope of the line.	$\begin{array}{ll} \text { SE: } & 389-394,401-408 \\ \text { TE: } & 389 A-394,401 A-408 \end{array}$

Houghton Mifflin Harcourt Into Math, Accelerated 7 © 2020 correlated to the
Indiana Mathematics Standards (2014), Grades 7/8

Standard	Description	Citations
Geometry and Measurement		
7.GM. 1	Explore triangles with given conditions from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.	SE: 295-300, 301-308, 309-314, 315-320 TE: 295A-300, 301A-308, 309A-314, 315A-320
7.GM. 2	Identify and describe similarity relationships of polygons including the angle-angle criterion for similar triangles, and solve problems involving similarity.	SE: 355-362, 363-370, 371-378 TE: 355A-362, 363A-370, 371A-378
7.GM. 3	Solve real-world and other mathematical problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing. Create a scale drawing by using proportional reasoning.	$\begin{array}{ll} \text { SE: } & 43-50 \\ \text { TE: } & 43 A-50 \end{array}$
7.GM. 4	Solve real-world and other mathematical problems using facts about vertical, adjacent, complementary, and supplementary angles.	SE: 215-222, 371-378 TE: 215A-222, 371A-378
7.GM. 5	Understand the formulas for area and circumference of a circle and use them to solve real-world and other mathematical problems; give an informal derivation of the relationship between circumference and area of a circle.	SE: 491-496, 497-502, 503-508 TE: 491A-496, 497A-502, 503A-508
7.GM. 6	Solve real-world and other mathematical problems involving volume of cylinders and three-dimensional objects composed of right rectangular prisms.	SE: 525-530, 531-536, 545-550 TE: 525A-530, 531A-A536, 545-550
7.GM. 7	Construct nets for right rectangular prisms and cylinders and use the nets to compute the surface area; apply this technique to solve real-world and other mathematical problems.	$\begin{array}{ll} \hline \text { SE: } & 519-524 \\ \text { TE: } & 519 A-524 \end{array}$

Houghton Mifflin Harcourt Into Math, Accelerated 7 © 2020 correlated to the
Indiana Mathematics Standards (2014), Grades 7/8

Standard	Description	Citations
Data Analysis, Statistics and Probability		
7.DSP. 1	Understand that statistics can be used to gain information about a population by examining a sample of the population. Understand that conclusions and generalizations about a population from a sample are valid only if the sample is representative of that population and that random sampling tends to produce representative samples and support valid inferences.	$\begin{array}{ll} \hline \text { SE: } & 557-562 \\ \text { TE: } & \text { 557A-562 } \end{array}$
7.DSP. 2	Use data from a random sample to draw inferences about a population. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions.	$\begin{array}{\|ll\|} \hline \text { SE: } & 563-570,571-576 \\ \text { TE: } & 563 \mathrm{~A}-570,571 \mathrm{~A}-576 \end{array}$
7.DSP. 3	Find, use, and interpret measures of center (mean and median) and measures of spread (range, interquartile range, and mean absolute deviation) for numerical data from random samples to draw comparative inferences about two populations.	SE: $\quad 581-586,587-592,593-598$ TE: $\quad 581 \mathrm{~A}-586,587 \mathrm{~A}-592,593 \mathrm{~A}-598$
7.DSP. 4	Make observations about the degree of visual overlap of two numerical data distributions represented in line plots or box plots. Describe how data, particularly outliers, added to a data set may affect the mean and/or median.	SE: $\quad 581-586,587-592,593-598$ TE: $581 \mathrm{~A}-586,587 \mathrm{~A}-592,593 \mathrm{~A}-598$
7.DSP. 5	Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Understand that a probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event. Understand that a probability of 1 indicates an event certain to occur and a probability of 0 indicates an event impossible to occur. Identify probabilities of events as impossible, unlikely, equally likely, likely, or certain.	SE: 605-610, 645-652 TE: 605A-610, 645A-652

Houghton Mifflin Harcourt Into Math, Accelerated 7 © 2020 correlated to the
Indiana Mathematics Standards (2014), Grades 7/8

Standard	Description	Citations
7.DSP. 6	Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its relative frequency from a large sample.	SE: $611-618,619-626,627-632,637-644,645-652,653-658$, $659-666$ TE: $611 \mathrm{~A}-618,619 \mathrm{~A}-626,627 \mathrm{~A}-632,637 \mathrm{~A}-644,645 \mathrm{~A}-652$, $653 \mathrm{~A}-658,659 \mathrm{~A}-666$
7.DSP. 7	Develop probability models that include the sample space and probabilities of outcomes to represent simple events with equally likely outcomes. Predict the approximate relative frequency of the event based on the model. Compare probabilities from the model to observed frequencies; evaluate the level of agreement and explain possible sources of discrepancy.	SE: 611-618, 637-644, 653-658 TE: 611A-618, 637A-644, 653A-658
Grade 8 Standards		
Number Sense		
8.NS. 1	Give examples of rational and irrational numbers and explain the difference between them. Understand that every number has a decimal equivalent. For rational numbers, show that the decimal equivalent terminates or repeats, and convert a repeating decimal into a rational number.	$\begin{array}{ll} \text { SE: } & 415-420 \\ \text { TE: } & 415 \mathrm{~A}-420 \end{array}$
8.NS. 2	Use rational approximations of irrational numbers to compare the size of irrational numbers, plot them approximately on a number line, and estimate the value of expressions involving irrational numbers.	$\begin{array}{ll} \text { SE: } & 429-434 \\ \text { TE: } & 429 \mathrm{~A}-434 \end{array}$
8.NS. 3	Given a numeric expression with common rational number bases and integer exponents, apply the properties of exponents to generate equivalent expressions.	SE: 463-470 TE: 463A-470
8.NS. 4	Use square root symbols to represent solutions to equations of the form $x^{2}=p$, where p is a positive rational number.	$\begin{array}{ll} \text { SE: } & 421-428 \\ \text { TE: } & 421 \mathrm{~A}-428 \end{array}$

Houghton Mifflin Harcourt Into Math, Accelerated 7 © 2020 correlated to the
Indiana Mathematics Standards (2014), Grades 7/8

Standard	Description	Citations
Computation		
8.C. 1	Solve real-world problems with rational numbers by using multiple operations.	$\begin{array}{ll} \text { SE: } & 149-154,167-174,195-200,201-208,209-214,215-222, \\ & 241-246 \\ \text { TE: } & 149 \mathrm{~A}-154,167 \mathrm{~A}-174,195 \mathrm{~A}-200,201 \mathrm{~A}-208,209 \mathrm{~A}-214, \\ & 215 \mathrm{~A}-222,241 \mathrm{~A}-246 \end{array}$
8.C. 2	Solve real-world and other mathematical problems involving numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Interpret scientific notation that has been generated by technology, such as a scientific calculator, graphing calculator, or excel spreadsheet.	SE: 471-478, 479-484 TE: 471A-478, 479A-484
Algebra and Functions		
8.AF. 1	Solve linear equations and inequalities with rational number coefficients fluently, including those whose solutions require expanding expressions using the distributive property and collecting like terms. Represent real-world problems using linear equations and inequalities in one variable and solve such problems.	$\begin{array}{ll} \hline \text { SE: } & 195-200,201-208,209-214,215-222,227-234,241-246 \\ \text { TE: } & 195 \mathrm{~A}-200,201 \mathrm{~A}-208,209 \mathrm{~A}-214,215 \mathrm{~A}-222,227 \mathrm{~A}-234, \\ & 241 \mathrm{~A}-246 \end{array}$
8.AF. 2	Generate linear equations in one variable with one solution, infinitely many solutions, or no solutions. Justify the classification given.	SE: 209-214, 215-222 TE: 209A-214, 215A-222
8.AF. 3	Understand that a function assigns to each x-value (independent variable) exactly one y-value (dependent variable), and that the graph of a function is the set of ordered pairs (x,y).	SE: 389-394, 395-400, 401-408 TE: 389A-394, 395A-400, 401A-408

Houghton Mifflin Harcourt Into Math, Accelerated 7 © 2020 correlated to the
Indiana Mathematics Standards (2014), Grades 7/8

Standard	Description	Citations
8.AF. 4	Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear, has a maximum or minimum value). Sketch a graph that exhibits the qualitative features of a function that has been verbally described.	$\begin{array}{ll} \hline \text { SE: } & 401-408 \\ \text { TE: } & 401 \mathrm{~A}-408 \end{array}$
8.AF. 5	Interpret the equation $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. Describe similarities and differences between linear and nonlinear functions from tables, graphs, verbal descriptions, and equation	SE: 395-400 TE: 395A-400
Geometry		
8.GM. 1	Identify, define, and describe attributes of three-dimensional geometric objects (right rectangular prisms, cylinders, cones, spheres, and pyramids). Explore the effects of slicing these objects using appropriate technology and describe the two-dimensional figure that results.	SE: 513-518 TE: 513A-518
8.GM. 2	Solve real-world and other mathematical problems involving volume of cones, spheres, and pyramids and surface area of spheres.	Students do not solve real-world or other mathematical problems involving surface area of spheres. The rest of the standard is covered, however: SE: 537-544, 545-550 TE: 537A-544, 545A-550
8.GM. 3	Verify experimentally the properties of rotations, reflections, and translations, including: lines are mapped to lines, and line segments to line segments of the same length; angles are mapped to angles of the same measure; and parallel lines are mapped to parallel lines.	SE: 259-266, 267-274, 275-282 TE: 259A-266, 267A-274, 275A-282

Houghton Mifflin Harcourt Into Math, Accelerated 7 © 2020 correlated to the
Indiana Mathematics Standards (2014), Grades 7/8

Standard	Description	Citations
8.GM. 4	Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations. Describe a sequence that exhibits the congruence between two given congruent figures.	SE: 283-290 TE: 283A-290
8.GM. 5	Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations. Describe a sequence that exhibits the similarity between two given similar figures.	$\begin{array}{ll} \text { SE: } & 341-348 \\ \text { TE: } & 341 \mathrm{~A}-348 \end{array}$
8.GM. 6	Explore dilations, translations, rotations, and reflections on two-dimensional figures in the coordinate plane.	$\begin{array}{ll} \text { SE: } & 259-266,267-274,275-282,283-290,333-340,341-348 \\ \text { TE: } & 259 \mathrm{~A}-266,267 \mathrm{~A}-274,275 \mathrm{~A}-282,283 \mathrm{~A}-290,333 \mathrm{~A}-340, \\ & 341 \mathrm{~A}-348 \end{array}$
8.GM. 7	Use inductive reasoning to explain the Pythagorean relationship.	$\begin{array}{ll} \text { SE: } & 439-444 \\ \text { TE: } & 439 \mathrm{~A}-444 \end{array}$
8.GM. 8	Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and other mathematical problems in two dimensions.	SE: 445-452 TE: 445A-452
8.GM. 9	Apply the Pythagorean Theorem to find the distance between two points in a coordinate plane.	$\begin{array}{ll} \text { SE: } & 453-458 \\ \text { TE: } & 453 \mathrm{~A}-458 \end{array}$

Houghton Mifflin Harcourt Into Math, Accelerated 7 © 2020 correlated to the
Indiana Mathematics Standards (2014), Grades 7/8

Standard	Description	Citations
Data Analysis and Statistics		
8.DSP. 4	Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs. Understand and use appropriate terminology to describe independent, dependent, complementary, and mutually exclusive events.	SE: 619-627, 645-652 TE: 619A-627, 645A-652
8.DSP. 5	Represent sample spaces and find probabilities of compound events (independent and dependent) using organized lists, tables, and tree diagrams.	SE: 619-627, 645-652 TE: 619A-627, 645A-652

Houghton Mifflin Harcourt

Into Math, Advanced 2 © 2020
correlated to the

Indiana Mathematics Standards (2014)
 Grades 7/8

Standard	Description	Citations
Process Standards for Mathematics		
PS. 1	Make sense of problems and persevere in solving them.	This standard is covered throughout the program. Representative pages include: SE: 13-20, 69-74, 103-111, 129-136, 169-176, 199-206, 225232, 253-260, 287-292, 345-350, 361-368, 391-398, 467472, 505-510, 559-566, 579-586, 627-632 TE: 13A-20, 69A-74, 103A-111, 129A-136, 169A-176, 199A- 206, 225A-232, 253A-260, 287A-292, 345A-350, 361A368, 391A-398, 467A-472, 505A-510, 559A-566, 579A586, 627A-632
PS. 2	Reason abstractly and quantitatively.	This standard is covered throughout the program. Representative pages include: SE: 5-12, 37-44, 55-62, 87-94, 129-136, 169-176, 191-198, 219-224, 245-252, 287-292, 329-336, 355-360, 385-390, 403-410, 431-438, 451-458, 477-484, 505-510, 527-532, 573-578, 605-612 TE: 5A-12, 37A-44, 55A-62, 87A-94, 129A-136, 169A-176, 191A-198, 219A-224, 245A-252, 287A-292, 329A-336, 355A-360, 385A-390, 403A-410, 431A-438, 451A-458, 477A-484, 505A-510, 527A-532, 573A-578, 605A-612

Houghton Mifflin Harcourt Into Math, Advanced 2 © 2020 correlated to the
Indiana Mathematics Standards (2014), Grades 7/8

Standard	Description	Citations
PS. 3	Construct viable arguments and critique the reasoning of others.	This standard is covered throughout the program. Representative pages include: $\begin{aligned} \text { SE: } & 13-20,55-63,103-110,129-136,155-162,183-190,225- \\ & 232,237-244,281-286,329-336,345-350,355-360,379- \\ & 384,411-418,425-430,451-458,493-498,511-516,551- \\ & 558,579-586,621-626 \\ \text { TE: } & 13 A-20,55 A-63,103 A-110,129 \mathrm{~A}-136,155 \mathrm{~A}-162, \\ & 183 \mathrm{AA}-190,225 \mathrm{~A}-232,237 \mathrm{~A}-244,281 \mathrm{~A}-286,329 \mathrm{~A}-336, \\ & \text { 345A-350, 355A-360, 379A-384, 411A-418, 425A-430, } \\ & \text { 451A-458, 493A-498, 511A-516, 551A-558, 579A-586, } \\ & \text { 621A-626 } \end{aligned}$
PS. 4	Model with mathematics.	This standard is covered throughout the program. Representative pages include: SE: 13-20, 29-36, 75-82, 95-102, 117-122, 155-162, 191-198, 211-218, 245-252, 293-298, 345-350, 369-374, 391-398, 411-418, 459-466, 545-550, 587-594, 613-620 TE: $13 \mathrm{~A}-20,29 \mathrm{~A}-36,75 \mathrm{~A}-82,95 \mathrm{~A}-102,117 \mathrm{~A}-122,155 \mathrm{~A}-162$, 191A-198, 211A-218, 245A-252, 293A-298, 345A-350, 369A-374, 391A-398, 411A-418, 459A-466, 545A-550, 587A-594, 613A-620
PS. 5	Use appropriate tools strategically.	This standard is covered throughout the program. Representative pages include: SE: $\quad 21-28,49-54,75-82,87-94,95-102,143-150,155-162$, 211-218, 253-260, 293-298, 369-374, 391-398, 411-418, 467-472, 493-498, 517-522, 551-558, 579-586 TE: 21A-28, 49A-54, 75A-82, 87A-94, 95A-102, 143A-150, 155A-162, 211A-218, 253A-260, 293A-298, 369A-374, 391A-398, 411A-418, 467A-472, 493A-498, 517A-522, 551A-558, 579A-586

Houghton Mifflin Harcourt Into Math, Advanced 2 © 2020 correlated to the
Indiana Mathematics Standards (2014), Grades 7/8

Standard	Description	Citations
PS. 6	Attend to precision.	This standard is covered throughout the program. Representative pages include: $\begin{array}{ll} \text { SE: } & 5-12,29-36,75-82,123-128,169-176,211-218,245-252, \\ & 293-298,361-368,439-446,467-472,493-498,517-522, \\ & 559-566,579-586,613-620 \\ \text { TE: } & 5 \mathrm{~A}-12,29 \mathrm{~A}-36,75 \mathrm{~A}-82,123 \mathrm{~A}-128,169 \mathrm{~A}-176,211 \mathrm{~A}-218, \\ & 245 \mathrm{~A}-252,293 \mathrm{~A}-298,361 \mathrm{~A}-368,439 \mathrm{~A}-446,467 \mathrm{~A}-472, \\ & 493 \mathrm{~A}-498,517 \mathrm{~A}-522,559 \mathrm{~A}-566,579 \mathrm{~A}-586,613 \mathrm{~A}-620 \end{array}$
PS. 7	Look for and make use of structure.	This standard is covered throughout the program. Representative pages include: SE: 21-28, 75-82, 143-150, 155-162, 225-232, 237-244, 281286, 329-336, 369-375, 391-398, 411-418, 431-438, 451458, 485-492, 505-510, 527-532, 559-566, 605-612 TE: $21 \mathrm{~A}-28,75 \mathrm{~A}-82,143 \mathrm{~A}-150,155 \mathrm{~A}-162,225 \mathrm{~A}-232,237 \mathrm{~A}-$ 244, 281A-286, 329A-336, 369A-375, 391A-398, 411A418, 431A-438, 451A-458, 485A-492, 505A-510, 527A532, 559A-566, 605A-612
PS. 8	Look for and express regularity in repeated reasoning. regularity in repeated reasoning.	This standard is covered throughout the program. Representative pages include: SE: 103-110, 129-136, 143-150, 169-176, 211-218, 261-268, 293-298, 345-350, 361-368, 391-398, 411-418, 431-438, 451-458, 477-484, 517-522, 527-532, 579-586 TE: 103A-110, 129A-136, 143A-150, 169A-176, 211A-218, 261A-268, 293A-298, 345A-350, 361A-368, 391A-398, 411A-418, 431A-438, 451A-458, 477A-484, 517A-522, 527A-532, 579A-586

Houghton Mifflin Harcourt Into Math, Advanced 2 © 2020 correlated to the
Indiana Mathematics Standards (2014), Grades 7/8

Standard	Description	Citations
Grade 7 Standards		
Number Sense		
7.NS. 2	Understand the inverse relationship between squaring and finding the square root of a perfect square whole number. Find square roots of perfect square whole numbers.	$\begin{array}{ll} \text { SE: } & 431-438 \\ \text { TE: } & 431 \mathrm{~A}-438 \end{array}$
7.NS. 3	Know there are rational and irrational numbers. Identify, compare, and order rational and common irrational numbers $(\sqrt{ } 2, \sqrt{ } 3, \sqrt{ } 5, \Pi)$ and plot them on a number line.	SE: 425-430, 439-446 TE: 425A-430, 439A-446
Computation		
7.C. 7	Compute with rational numbers fluently using a standard algorithmic approach.	$\begin{array}{ll} \hline \text { SE: } & 123-128,129-136,137-142,143-150,155-162,169-176, \\ & 293-298,299-306,307-314,315-322 \\ \text { TE: } & 123 A-128,129 A-136,137 A-142,143 A-150,155 A-162, \\ & 169 A-176,293 A-298,299 A-306,307 A-314,315 A-322 \end{array}$
7.C. 8	Solve real-world problems with rational numbers by using one or two operations.	$\begin{array}{ll} \text { SE: } & 123-128,129-136,137-142,143-150,155-162,169-176, \\ & 315-322 \\ \text { TE: } & 123 A-128,129 A-136,137 A-142,143 A-150,155 A-162, \\ & 169 A-176,315 A-322 \end{array}$
Algebra and Functions		
7.AF. 1	Apply the properties of operations (e.g., identity, inverse, commutative, associative, distributive properties) to create equivalent linear expressions, including situations that involve factoring out a common number (e.g., given $2 \mathrm{x}-10$, create an equivalent expression 2(x-5)). Justify each step in the process.	$\begin{array}{ll} \text { SE: } & 123-128,129-136,137-142,143-150,155-162,169-176, \\ & 293-298,299-306,307-314,315-322 \\ \text { TE: } & 123 A-128,129 \mathrm{~A}-136,137 \mathrm{~A}-142,143 \mathrm{~A}-150,155 \mathrm{~A}-162, \\ & 169 \mathrm{~A}-176,293 \mathrm{~A}-298,299 \mathrm{~A}-306,307 \mathrm{~A}-314,315 \mathrm{~A}-322 \end{array}$
7.AF. 2	Solve equations of the form $\mathrm{px}+\mathrm{q}=\mathrm{r}$ and $\mathrm{p}(\mathrm{x}+\mathrm{q})=\mathrm{r}$ fluently, where p, q, and r are specific rational numbers. Represent real-world problems using equations of these forms and solve such problems.	$\begin{array}{ll} \text { SE: } & 123-128,129-136,137-142,143-150,293-298,299-306, \\ & 307-314,315-322 \\ \text { TE: } & 123 A-128,129 A-136,137 A-142,143 A-150,293 A-298, \\ & 299 A-306,307 A-314,315 A-322 \end{array}$

Houghton Mifflin Harcourt Into Math, Advanced 2 © 2020 correlated to the Indiana Mathematics Standards (2014), Grades 7/8

Standard	Description	Citations
7.AF. 3	Solve inequalities of the form $\mathrm{px}+\mathrm{q}(>$ or $\geq) \mathrm{r}$ or $\mathrm{px}+\mathrm{q}(<$ or \leq) r , where p, q, and r are specific rational numbers. Represent real-world problems using inequalities of these forms and solve such problems. Graph the solution set of the inequality and interpret it in the context of the problem.	SE: 155-162, 169-176 TE: 155A-162, 169A-176
7.AF. 4	Define slope as vertical change for each unit of horizontal change and recognize that a constant rate of change or constant slope describes a linear function. Identify and describe situations with constant or varying rates of change.	SE: 211-218, 219-224, 245-252 TE: 211A-218, 219A-224, 245A-252
7.AF. 5	Graph a line given its slope and a point on the line. Find the slope of a line given its graph.	SE: 219-224, 225-232 TE: 219A-224, 225A-232
7.AF. 6	Decide whether two quantities are in a proportional relationship (e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin).	SE: 219-224, 225-232 TE: 219A-224, 225A-232
7.AF. 7	Identify the unit rate or constant of proportionality in tables, graphs, equations, and verbal descriptions of proportional relationships.	SE: 219-224, 225-232 TE: 219A-224, 225A-232
7.AF. 8	Explain what the coordinates of a point on the graph of a proportional relationship mean in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$, where r is the unit rate.	SE: 219-224, 225-232 TE: 219A-224, 225A-232
7.AF. 9	Represent real-world and other mathematical situations that involve proportional relationships. Write equations and draw graphs to represent these proportional relationships. Recognize that these situations are described by a linear function in the form $\mathrm{y}=\mathrm{mx}$, where the unit rate, m , is the slope of the line.	$\begin{array}{ll} \text { SE: } & 211-218,219-224,225-232,237-244,245-252,253-260, \\ & 261-268,269-276 \\ \text { TE: } & 211 \mathrm{~A}-218,219 \mathrm{~A}-224,225 \mathrm{~A}-232,237 \mathrm{~A}-244,245 \mathrm{~A}-252, \\ & 253 \mathrm{~A}-260,261 \mathrm{~A}-268,269 \mathrm{~A}-276 \end{array}$

Houghton Mifflin Harcourt Into Math, Advanced 2 © 2020 correlated to the
Indiana Mathematics Standards (2014), Grades 7/8

Standard	Description	Citations
Geometry and Measurement		
7.GM. 1	Explore triangles with given conditions from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.	SE: 49-54, 55-62, 63-68, 69-74 TE: 49A-54, 55A-62, 63A-68, 69A-74
7.GM. 2	Identify and describe similarity relationships of polygons including the angle-angle criterion for similar triangles, and solve problems involving similarity.	SE: 183-190, 191-198, 199-206, 211-218 TE: 183A-190, 191A-198, 199A-206, 211A-218
7.GM. 3	Solve real-world and other mathematical problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing. Create a scale drawing by using proportional reasoning.	$\begin{array}{ll} \hline \text { SE: } & 75-82 \\ \text { TE: } & 75 \mathrm{~A}-82 \end{array}$
7.GM. 4	Solve real-world and other mathematical problems using facts about vertical, adjacent, complementary, and supplementary angles.	SE: 183-190, 191-198, 199-206 TE: 183A-190, 191A-198, 199A-206
7.GM. 5	Understand the formulas for area and circumference of a circle and use them to solve real-world and other mathematical problems; give an informal derivation of the relationship between circumference and area of a circle.	SE: 505-510, 511-516, 517-522 TE: 505A-510, 511A-516, 517A-522
7.GM. 6	Solve real-world and other mathematical problems involving volume of cylinders and three-dimensional objects composed of right rectangular prisms.	SE: 517-522, 539-544, 545-550, 551-558, 559-566 TE: 517A-522, 539A-544, 545A-550, 551A-558, 559A-566
7.GM. 7	Construct nets for right rectangular prisms and cylinders and use the nets to compute the surface area; apply this technique to solve real-world and other mathematical problems.	$\begin{array}{ll} \text { SE: } & 533-538 \\ \text { TE: } & 533 A-538 \end{array}$

Houghton Mifflin Harcourt Into Math, Advanced 2 © 2020 correlated to the
Indiana Mathematics Standards (2014), Grades 7/8

Standard	Description	Citations
Data Analysis, Statistics and Probability		
7.DSP. 1	Understand that statistics can be used to gain information about a population by examining a sample of the population. Understand that conclusions and generalizations about a population from a sample are valid only if the sample is representative of that population and that random sampling tends to produce representative samples and support valid inferences.	$\begin{array}{ll}\text { SE: } & 355-360 \\ \text { TE: } & 355 A-360\end{array}$
7.DSP. 2	Use data from a random sample to draw inferences about a population. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions.	SE: 361-368, 369-374 TE: 361A-368, 369A-374
7.DSP. 3	Find, use, and interpret measures of center (mean and median) and measures of spread (range, interquartile range, and mean absolute deviation) for numerical data from random samples to draw comparative inferences about two populations.	SE: 379-384, 385-390, 391-398 TE: 379A-384, 385A-390, 391A-398
7.DSP. 4	Make observations about the degree of visual overlap of two numerical data distributions represented in line plots or box plots. Describe how data, particularly outliers, added to a data set may affect the mean and/or median.	SE: 379-384, 385-390, 391-398 TE: 379A-384, 385A-390, 391A-398
7.DSP. 5	Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Understand that a probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event. Understand that a probability of 1 indicates an event certain to occur and a probability of 0 indicates an event impossible to occur. Identify probabilities of events as impossible, unlikely, equally likely, likely, or certain.	SE: 573-578, 613-620 TE: 573A-578, 613A-620

Houghton Mifflin Harcourt Into Math, Advanced 2 © 2020 correlated to the Indiana Mathematics Standards (2014), Grades 7/8

Standard	Description	Citations
7.DSP. 6	Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its relative frequency from a large sample.	```SE: 579-586, 587-594, 595-600, 605-612, 613-620, 621-626, 627-632 TE: 579A-586, 587A-594, 595A-600, 605A-612, 613A-620, 621A-626, 627A-632```
7.DSP. 7	Develop probability models that include the sample space and probabilities of outcomes to represent simple events with equally likely outcomes. Predict the approximate relative frequency of the event based on the model. Compare probabilities from the model to observed frequencies; evaluate the level of agreement and explain possible sources of discrepancy.	$\begin{array}{ll} \text { SE: } & 403-410,411-418,579-586,587-594,605-612,613-620, \\ & 621-626,627-632 \\ \text { TE: } & 40 \mathrm{~A} 3-410,411 \mathrm{~A}-418,579 \mathrm{~A}-586,587 \mathrm{~A}-594,605 \mathrm{~A}-612, \\ & 613 \mathrm{~A}-620,621 \mathrm{~A}-626,627 \mathrm{~A}-632 \end{array}$
Grade 8 Standards		
Number Sense		
8.NS. 1	Give examples of rational and irrational numbers and explain the difference between them. Understand that every number has a decimal equivalent. For rational numbers, show that the decimal equivalent terminates or repeats, and convert a repeating decimal into a rational number.	$\begin{array}{ll} \text { SE: } & 425-430 \\ \text { TE: } & 425 A-430 \end{array}$
8.NS. 2	Use rational approximations of irrational numbers to compare the size of irrational numbers, plot them approximately on a number line, and estimate the value of expressions involving irrational numbers.	$\begin{array}{ll}\text { SE: } & 439-446 \\ \text { TE: } & 439 A-446\end{array}$
8.NS. 3	Given a numeric expression with common rational number bases and integer exponents, apply the properties of exponents to generate equivalent expressions.	SE: 477-484 TE: 477A-484
8.NS. 4	Use square root symbols to represent solutions to equations of the form $\mathrm{x}^{2}=\mathrm{p}$, where p is a positive rational number.	$\begin{array}{ll}\text { SE: } & 431-438 \\ \text { TE: } & 431 \mathrm{~A}-438\end{array}$

Houghton Mifflin Harcourt Into Math, Advanced 2 © 2020 correlated to the
Indiana Mathematics Standards (2014), Grades 7/8

Standard	Description	Citations
Computation		
8.C. 1	Solve real-world problems with rational numbers by using multiple operations.	$\begin{aligned} \text { SE: } & 123-128,129-136,137-142,143-150,169-176,293-298, \\ & 299-306,307-314,315-322 \\ \text { TE: } & 123 A-128,129 \mathrm{~A}-136,137 \mathrm{~A}-142,143 \mathrm{~A}-150,169 \mathrm{~A}-176, \\ & 293 \mathrm{~A}-298,299 \mathrm{~A}-306,307 \mathrm{~A}-314,315 \mathrm{~A}-322 \end{aligned}$
8.C. 2	Solve real-world and other mathematical problems involving numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Interpret scientific notation that has been generated by technology, such as a scientific calculator, graphing calculator, or excel spreadsheet.	SE: 485-492, 493-498 TE: 485A-492, 493A-498
Algebra and Functions		
8.AF. 1	Solve linear equations and inequalities with rational number coefficients fluently, including those whose solutions require expanding expressions using the distributive property and collecting like terms. Represent real-world problems using linear equations and inequalities in one variable and solve such problems.	$\begin{array}{ll} \text { SE: } & 123-128,129-136,137-142,143-150,169-176,293-298, \\ & 299-306,307-314,315-322,485-492,493-498 \\ \text { TE: } & 123 A-128,129 A-136,137 A-142,143 A-150,169 A-176, \\ & 293 A-298,299 A-306,307 A-314,315 A-322,485 A-492, \\ & 493 A-498 \end{array}$
8.AF. 2	Generate linear equations in one variable with one solution, infinitely many solutions, or no solutions. Justify the classification given.	SE: 137-142, 143-150 TE: 137A-142, 143A-150
8.AF. 3	Understand that a function assigns to each x -value (independent variable) exactly one y-value (dependent variable), and that the graph of a function is the set of ordered pairs (x,y).	SE: 237-244 TE: 237A-244

Houghton Mifflin Harcourt Into Math, Advanced 2 © 2020 correlated to the Indiana Mathematics Standards (2014), Grades 7/8

Standard	Description	Citations
8.AF. 4	Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear, has a maximum or minimum value). Sketch a graph that exhibits the qualitative features of a function that has been verbally described.	SE: 245-252, 253-260, 261-268 TE: 245A-252, 253A-260, 261A-268
8.AF. 5	Interpret the equation $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. Describe similarities and differences between linear and nonlinear functions from tables, graphs, verbal descriptions, and equation	SE: 245-252, 253-260, 261-268, 269-276 TE: 245A-252, 253A-260, 261A-268, 269A-276
8.AF. 6	Construct a function to model a linear relationship between two quantities given a verbal description, table of values, or graph. Recognize in $y=m x+b$ that m is the slope (rate of change) and b is the y-intercept of the graph, and describe the meaning of each in the context of a problem.	SE: 245-252, 253-260, 261-268 TE: 245A-252, 253A-260, 261A-268
8.AF. 7	Compare properties of two linear functions given in different forms, such as a table of values, equation, verbal description, and graph (e.g., compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed).	$\begin{array}{ll} \text { SE: } & 261-268 \\ \text { TE: } & 261 \mathrm{~A}-268 \end{array}$
8.AF. 8	Understand that solutions to a system of two linear equations correspond to points of intersection of their graphs because points of intersection satisfy both equations simultaneously. Approximate the solution of a system of equations by graphing and interpreting the reasonableness of the approximation.	SE: 287-292 TE: 287A-292

Houghton Mifflin Harcourt Into Math, Advanced 2 © 2020 correlated to the
Indiana Mathematics Standards (2014), Grades 7/8

Standard	Description	Citations
Geometry		
8.GM. 1	Identify, define, and describe attributes of three-dimensional geometric objects (right rectangular prisms, cylinders, cones, spheres, and pyramids). Explore the effects of slicing these objects using appropriate technology and describe the two-dimensional figure that results.	SE: $527-532$ TE: $527 A-532$
8.GM. 2	Solve real-world and other mathematical problems involving volume of cones, spheres, and pyramids and surface area of spheres.	SE: 551-558, 559-566 TE: 551A-558, 559A-566
8.GM. 3	Verify experimentally the properties of rotations, reflections, and translations, including: lines are mapped to lines, and line segments to line segments of the same length; angles are mapped to angles of the same measure; and parallel lines are mapped to parallel lines.	SE: 5-12, 13-20, 21-28, 29-36 TE: $5 \mathrm{~A}-12,13 \mathrm{~A}-20,21 \mathrm{~A}-28,29 \mathrm{~A}-36$
8.GM. 4	Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations. Describe a sequence that exhibits the congruence between two given congruent figures.	SE: 37-44 TE: 37A-44
8.GM. 5	Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations. Describe a sequence that exhibits the similarity between two given similar figures.	$\begin{array}{ll} \hline \text { SE: } & 103-110 \\ \text { TE: } & 103 A-110 \end{array}$
8.GM.6	Explore dilations, translations, rotations, and reflections on two-dimensional figures in the coordinate plane.	SE: 13-20, 21-28, 29-36, 37-44, 87-94, 95-102 TE: $\quad 13 \mathrm{~A}-20,21 \mathrm{~A}-28,29 \mathrm{~A}-36,37 \mathrm{~A}-44,87 \mathrm{~A}-94,95 \mathrm{~A}-102$

Houghton Mifflin Harcourt Into Math, Advanced 2 © 2020 correlated to the
Indiana Mathematics Standards (2014), Grades 7/8

Standard	Description		Citations
8.GM. 7	Use inductive reasoning to explain the Pythagorean relationship.	$\begin{array}{ll}\text { SE: } & 451-458 \\ \text { TE: } & 451 \mathrm{~A}-458\end{array}$	
8.GM. 8	Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and other mathematical problems in two dimensions.	SE: 459-466 TE: 459A-466	
8.GM. 9	Apply the Pythagorean Theorem to find the distance between two points in a coordinate plane.	SE: 467-472 TE: 467A-472	
Data Analysis and Statistics			
8.DSP. 1	Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantitative variables. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.	$\begin{array}{ll} \text { SE: } & 329-336 \\ \text { TE: } & 329 A-336 \end{array}$	
8.DSP. 2	Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and describe the model fit by judging the closeness of the data points to the line.	$\begin{array}{ll}\text { SE: } & 337-344 \\ \text { TE: } & 337 A-344\end{array}$	
8.DSP. 3	Write and use equations that model linear relationships to make predictions, including interpolation and extrapolation, in real-world situations involving bivariate measurement data. Interpret the slope and y-intercept in context.	SE: 345-350 TE: 345A-350	

Houghton Mifflin Harcourt Into Math, Advanced 2 © 2020 correlated to the Indiana Mathematics Standards (2014), Grades 7/8

Standard	Description	Citations	
8.DSP.4	Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs. Understand and use appropriate terminology to describe independent, dependent, complementary, and mutually exclusive events.	SE: 587-594, 595-600, 613-620, 621-626	TE: 587A-594, 595A-600, 613A-620, 621A-626

